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Abstract

We describe the domain of using an Autonomous Underwater
Vehicle to find hydrothermal vents located on the sea floor,
and explain some of the difficulties in planning in this do-
main. We also present a simplified model of the domain, and
outline a possible approach for on-line plan generation.

Introduction
The ocean floor was once thought to be lifeless and uninter-
esting, but since the 1960s, a wealth of interesting geologi-
cal and biological phenomena have been found. Our interest
is in hydrothermal vents—outgassings of superheated water
found on oceanic ridges and of interest to both biologists
and geologists. However, exploring these depths is difficult,
due to the extreme pressures, cold temperatures and lack of
light. Instead of using crewed vehicles for exploration, sci-
entific missions increasingly use Remotely Operated Vehi-
cles (ROVs) and Autonomous Underwater Vehicles (AUVs)
(Blidberg 2001). These can operate for longer periods than
manned craft, and in less accessible areas. AUVs have the
additional advantages over ROVs that they do not need a
tether to a mother ship, nor 24-hour remote operation. AUVs
have proved useful to marine scientists, for example the
AUV ABE discovered a series of hydrothermal vents dur-
ing a research cruise in 2005 (German & Parson 2006).

The key limitation of current AUVs is that they generally
either follow a pre-programmed course, or have only rule-
based control systems, which can lead to inefficient explo-
ration. We want to develop more advanced planning systems
for AUVs, to enable them to maximise the scientific reward
of missions, given their uncertain picture of the world, and
limited power resources. The task we focus on is to locate
and examine hydrothermal vents. The AUV gains clues to
vent locations by detecting properties of the outflowing wa-
ter, which is rich in chemicals, and is of a different temper-
ature and salinity than normal seawater. The AUV will have
chemical and temperature/salinity sensors, and from noisy
data provided by these it should be able to build a proba-
bilistic map of where vents may be located. The planning
aspect of the problem is deciding what the robot should do
given the uncertain information it has; for example, should
it spend further time exploring a vent it has already exam-
ined, move on and try to find further vents, or end its mis-

sion while it is guaranteed to have enough battery power to
return to the surface?

In this paper, firstly we describe current techniques used
to find hydrothermal vents, and the kind of planning prob-
lems that arise when trying to automate this process. We
next outline a simplified version of the problem, based in
part on our analysis of data from a research cruise where sev-
eral hydrothermal vents were located, which we hope will
be solvable. Finally we describe previous work on similar
problems, and suggest an approach for producing a planner
capable of finding near-optimal solutions to the (simplified)
problem laid out here. We aim to implement such a planner
ourselves in the near future.

Finding Hydrothermal Vents
Hydrothermal vents are due to plate tectonics, which arise
from the layered nature of the Earth. Continental plates are
part of the crust, which floats on top of the deformable upper
mantle. Vents form on spreading centres, which are plate
boundaries where plates are moving apart from one another,
and magma flows up from the mantle to form new ocean
floor. When cold seawater seeps down through cracks in the
rocks on an oceanic ridge, it comes into contact with the hot
magma below and heats up. Then convection causes it to rise
back up to the sea, dissolving minerals and metals from the
surrounding rocks on the way, and it forms a hydrothermal
vent when it exits back into the ocean. The most spectacular
vents are nicknamed “black smokers” and often exit from
tall chimneys formed from minerals they deposit.

Volcanic activity varies along the length of an oceanic
ridge, with some areas more active than others, which leads
to vents often being found in “vent fields” containing mul-
tiple vents in close proximity. Also vents come in differ-
ent sizes and have different peak temperatures, as some are
older than others, and some are formed from water that has
not seeped very far down towards the hot magma.

The hydrothermal fluid emanating from vents contains
“tracers”, which are unique chemical and physical proper-
ties that identify the source of the water, for example the
presence of dissolved methane. Fluid rising from a vent will
mix with cold sea water, and continue rising and cooling
until it reaches a height where it has the same buoyancy
as the surrounding water (generally at around 250m). The
fluid, still containing tracers from the vent, then disperses



Figure 1: Diagram showing the typical dispersion of a hy-
drothermal plume (not to scale).
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in a plume driven by the current as shown in figure 1. Sev-
eral issues make it hard to detect this plume: firstly, the vent
water is mixed with sea water and is not significantly dif-
ferent in temperature from the surrounding water (however,
the interaction between salinity, temperature and density in
seawater does mean hydrothermal fluid contains a “temper-
ature anomaly”). Secondly, the current flow is not constant,
but will change direction every few hours. Thirdly, sea wa-
ter often separates into vertical layers with different densi-
ties, and hydrothermal fluid will not easily cross these layer
boundaries, which means it can sometimes become trapped
at a higher or lower altitude than normal. Finally, the water
column movement is somewhat turbulent, and tracers will
only appear in the plume water intermittently at best. In fact,
it is possible for vent tracers to become trapped in a vortex,
and there to be no trail leading back to the vent.

Traditional Methods for Locating Vents
This section describes the process by which hydrothermal
vents are found, and describes some of the key sensor sys-
tems used in locating them. A typical research cruise with
the aim of finding vents will use four methods:

• Gathering low-resolution bathymetry data (XYZ data de-
scribing the relief of the ocean bottom).

• CTD casts. CTDs are Conductivity/Temperature/Depth
sensors, which are attached to a cage containing sampling
bottles which is slowly lowered to the ocean floor while
keeping the ship on station in a fixed location.

• Sensor platforms towed behind the ship, at a depth of a
few hundred metres above the sea floor, comprising CTD,
bathymetry, and probably other sensors.

• A submersible such as an ROV or AUV is often used to
explore vents close-up.

Bathymetry data is captured by the research ship’s on-board
swathe bathymetry sensors, which can map a region several
kilometres wide in a single pass. Bathymetry can be used by
experts on vent geology to identify likely locations for vents
based on the relief of the area, and can guide deployments of
the CTD and deep-tow platforms. CTD and deep-tow data
will hopefully locate vent plume(s), which provide pointers

to where vent fields are. Vents are then pinpointed by low-
altitude surveys in a submersible.

CTDs, deep-towed platforms and ROVs/AUVs can all
make use of similar chemical sensors to track down vents.
The important sensors are (Baker, German, & Elderfield
1995):

Optical backscattering When the hydrothermal fluid
meets cold sea water, many of the minerals precipitate
out into particle form, making the vent water very cloudy.
The particle concentration in the water can be estimated
by measuring the amount of light reflected back using a
Light Scattering Sensor (LSS, or Nephelometer). The
background level is nearly constant below 1000m, which
makes the readings easy to interpret.

Methane Dissolved methane is an unambiguous indicator
of vent activity and is easily measured.

Reduction potential (often referred to as Eh). Redox po-
tential measures the chemical reactivity of the water; hy-
drothermal water has low redox potential, as it is low in
oxygen. Eh is useful as strong changes in it are only ob-
served close to a vent, within a few hundred metres.

Manganese, Iron, and other metals Manganese in partic-
ular is enriched by several orders of magnitude in hy-
drothermal fluid compared to normal seawater.

Potential temperature versus salinity anomalies While
the temperature of hydrothermal fluid far from the vent
is indistinguishable from that of the surrounding water,
it will be identifiable by a change in the normally linear
relationship between potential temperature and salinity
in a given region of ocean. Such anomalies can be
found by examining a series of CTD data, as salinity and
potential temperature are just functions of conductivity,
temperature and density.

Smart AUVs
Existing AUVs are extremely useful tools for searching for
hydrothermal vents, and contain intelligent software to allow
them to avoid obstacles, navigate a fixed route regardless of
current direction and magnitude, and in some cases to hover
in a fixed location. However, they are generally not capable
of deciding on a mission route for themselves, or if they are,
use only a basic algorithm for exploring previously detected
areas of high tracer activity. Our objective is to replicate
the overall behaviour of the traditional approach for finding
vents described above, beginning once a promising area of
seabed has already been identified. The scenario we envis-
age is that a research vessel will cruise over the area being
explored and identify likely areas for vents. These areas will
then be explored by deploying an AUV. The AUV will at-
tempt to locate vents and perform science until its battery is
exhausted, at which point it will return to the surface.

AUVs for such a task should decide when to use an ex-
haustive search pattern, when to investigate an area of high
vent probability, and if investigating potential vent areas,
which areas it would be most fruitful to explore further.
They should decide when to survey at high altitudes, look-
ing for far-off vents, and when to search for near vents at



low altitudes. They should decide when a vent has been
localised to a high enough probability, and examined thor-
oughly enough, such that more reward would derive from
searching for a new vent. They should decide when the risks
of not having enough resources to return to the surface out-
weigh the potential science benefits of continuing the mis-
sion. They should decide when to take science actions such
as taking a photograph or collecting a water sample.

Working Version of the Problem
One way to formulate the planning problem is as a partially
observable Markov decision process (POMDP). A POMDP
is a tuple < S,A,O, T,H, R > where S is the set of pos-
sible system states, A is the set of possible actions, O is the
set of possible observations, T = P (s, a, s′) is the transition
function that governs how an action changes the state of the
system, H = P (o|s, a) is the observation function that gov-
erns how likely each observation is given a state and action,
and R = r(s, a) is the reward function which specifies the
immediate utility of doing a particular action in a state.

In our domain, the state space S consists not only of the
state of the vehicle, but also the (unknown) locations of all
objects of interest. Unlike typical POMDPs, this is a mixed
discrete-continuous space as the vehicle could be at any lo-
cation, as could an unknown number of vents. In addition,
we will want to reason about how much of our resources
(battery power and time) are available at any stage, so we
may need to include these in the state as well.

A is the set of actions the vehicle can perform, consist-
ing of both movement actions and sensory actions such as
measuring the temperature of the surrounding water. Again,
there is a continuous space of possible actions that could be
performed. As an additional complication we may wish to
account for the time taken performing an action as part of
our decision-making. For simplicity we will assume the ve-
hicle has access only to two sensors, but as each of these
produces a continuous measurement, the observation space
O is again continuous.

Depending on exactly how we formulate the planning
problem, the transition function T can be thought of as only
applying to movement actions as all the others don’t change
the state, they only provide information. However, if we in-
clude resource variables into our model in the same way as
(Bresina et al. 2002) do, then even information-gathering
actions have an effect in terms of taking time and using bat-
tery power, so they too have an effect on system state. Be-
cause of the uncertainty produced by currents, the transition
function for movement actions will tend to be quite noisy.
Resource usage may also be quite uncertain.

The observation function H for movement actions con-
tains very little noise for many underwater vehicles as the
Doppler sonar used to measure position is very accurate.
However, as we will see below, the observation function for
the other instruments can be extremely noisy. Even given
a set of perfect sensor readings, the set of potential source
vents for these readings is large, which will cause substan-
tial problems in interpreting the observations.

Finally we consider what the reward function R should
look like for this problem. The overall goal of a mission of

this kind is to return science data to the surface. That is, col-
lecting the data (finding vents and doing science on them)
has no intrinsic value, only returning that data has value.
In addition, there are serious risks involved with some ac-
tivities. The temperature of the water leaving the vents is
enough to melt parts of the vehicle, so there needs to be a
significant negative reward for vehicle damage.

Plume Model
We have developed a simplified model of the dispersion of
tracers from a hydrothermal vent. This model has been gen-
erated from two main sources: our intuition about the be-
haviour of plumes, and the analysis of survey data from
a research cruise. The data is from RSS Charles Dar-
win cruise CD169, which managed to locate a hydrother-
mal vent on the Mid-Atlantic Ridge during February and
March 2005 (German & Parson 2006). The data was ac-
quired from three separate instruments: firstly a deep-towed
side-scan sonar platform (TOBI), secondly CTD (Conduc-
tivity/Temperature/ Depth) data from 15 locations, and fi-
nally from sensors on an AUV, ABE, which is operated by
the Woods Hole Oceanographic Institution (WHOI) and was
sent on 6 missions from the Charles Darwin.

We chose to model just two variables initially, optical
backscattering (LSS) and reduction potential (Eh), as these
are two of the most important indicators of hydrothermal ac-
tivity, and were available from most of the data sources. Fig-
ure 2 shows these two variables plotted with distance from a
vent site, from ABE data recordings at an altitude of 5m.

Note the noise for LSS and Eh is very different—for LSS,
the signal is approximately either present or missing, sug-
gesting that the particles from the hydrothermal fluid have
not mixed uniformly with seawater. Redox potential, how-
ever, shows a much smoother variation.

Our model deals with two separate situations, depending
on whether or not the AUV is directly above a vent. In each
case, three distributions are used to generate an "expected"
value for the sensor, given the location of the AUV relative
to the vent, and the AUV’s estimate of the current (which
it can calculate from its path over the ground and its motor
settings). These are a horizontal distribution in the direction
of the current, a horizontal distribution perpendicular to the
current, and a vertical distribution. Expected tracer values
are found by intersecting all three curves.

The distributions along the current direction above a vent
were found by examining LSS and Eh data from an altitude
of 5m above the ocean floor, and fitting them to a sum-of-
Gaussians based model. The resulting fit is shown in figure
2. The vertical distribution was found from looking at LSS
data from a CTD cast approximately directly over a vent,
and again fitting it to a sum-of-Gaussians model, as shown
in figure 3.

The remaining four distributions needed to model the
plume are shown for LSS in figure 4. Figure 4 (a) shows an
approximation of the behaviour LSS directly above a vent,
perpendicular to the current. The other subfigures describe
the model away from a vent, i.e. outside the 50m by 10m
area defined by the limits of the distributions in figures 2
and 4 (a). The vertical profile is shown in figure 4 (b), and



Figure 2: Distributions used to approximate backscatter-
ing and Eh dispersal over distance, at 5m altitude. We be-
lieve that the sharp peak on the left represents a separate
vent located somewhat off the track plotted. Eh values have
been negated for ease of visualisation, so the peak shown at
−2.2Eh is in fact a trough at 2.2Eh.
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Figure 3: Attenuation of the LSS signal with altitude directly
above a vent
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represents the general form observed in CTD casts which
were not directly above a vent. This distribution is essen-
tially a cross-section of the buoyant plume as shown in fig-
ure 1, away from the "tail" of the mushroom cloud.

The horizontal distributions away from a vent are shown
in figure 4 (c) and 4 (d). These are based on estimates of
the range of tracers as they are dispersed horizontally in
the plume, and are again modelled as sums of Gaussians.
The distributions used for redox potential will have the same
form as those shown for LSS.

The model presented above will frequently not match
measurements from a real vent, because hydrothermal vents
are very variable in terms of the characteristics of the wa-
ter emitted from them. This variation is found within a vent
field, in the peak values of each tracer, the geographic spread
of tracers, height of the buoyant plumes, and also between
vent fields and especially between fields found in differ-
ent oceans. For example, in the Pacific ocean, the buoyant

plumes are slightly warmer than surrounding water, whereas
in the Atlantic they are slightly colder (Baker, German, &
Elderfield 1995). Despite this, our model is a sensible first
step, and we hope that the addition of noise when formu-
lating our observation function H will make it reasonably
robust to the diversity of real-world vents.

Previous Planning Work
There are a number of relevant approaches in the plan-
ning literature. If we look at the POMDP literature, al-
gorithms such as incremental pruning (Cassandra, Littman,
& Zhang 1997) and bounded policy iteration-based ap-
proaches (Poupart & Boutilier 2004) have been used to solve
POMDPs with tens of thousands of states. However, few of
these address the problems of continuous state and action
spaces, and continuous resources.

On the other hand, the Mars rover work of (Bresina et al.
2002; Dearden et al. 2003; Mausam et al. 2005) tackles the
problem of planning with continuous state variables for re-
sources such as battery power, and uncertainty over resource
usage. However these algorithms work for the completely
observable case.

Frequently in planning we deal with continuous state
spaces and uncertainty by abstracting them away, and this
is certainly an approach that could be taken here. If we look
at how human-controlled searches for vents are performed,
they tend to conform to a relatively simple pattern where ar-
eas are systematically searched by ’mowing the lawn’ at an
altitude of 3-500 metres off the seabed to produce a large-
scale map of plume density, following which likely vent lo-
cations are determined and lower (~5m altitude) searches are
performed to localise the vents. Simple current-following al-
gorithms may also be used to follow a signal to its source.
Each of these activities can be thought of as an abstract ac-
tion and a planner used to decide between them. They can
then be decomposed into sequences of lower-level actions
which can be interrupted when significant observations are
made. This approach is closely related to HTN planning ap-
proaches (Erol, Hendler, & Nau 1994). The advantage is
that the planning task becomes relatively simple. However,
the reason human-controlled missions proceed in this fash-
ion is that data tends to be analysed off-line after it has been
collected, so a search consists of a high-altitude mission, fol-
lowed by analysis of the data collected to identify promising
regions, which are then searched at low altitude in a subse-
quent mission. Because we are doing the analysis on-board
while data collection is continuing, we should be able to do
significantly better than these approaches.

Our Planning Approach
The overall problem can be subdivided into the challenges of
state estimation and planning. In practice these two should
interact with each other more than just the obvious interac-
tion that the estimated state is an input to the planner. Since
we are exploring, changing the state estimate is a significant
goal of the planner and the planner needs to reason about
the belief state. In addition, there are significant differences
between our current model and the actual behaviour of the



Figure 4: Typical LSS distributions
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plume over a vent or vent field. Separating the state estima-
tion component from the planner allows the planner to be
independent of the model, and therefore we can leave the
planner unchanged when we improve the fidelity of the ob-
servation model. For now, we will set these arguments aside
and consider the two systems independently.

State Estimation
The challenging part of the state estimation problem is esti-
mating vent locations. We get a stream of observations from
the vehicle’s suite of instruments and must build an estimate
of where we are likely to find vents. Essentially this is a
mapping problem similar to that in SLAM (Thrun 2006),
but here the possible explanations for an observation aren’t
independent as they are in SLAM. The model we developed
above to predict the plume characteristics from a vent is too
complex to invert to predict vent locations from observations
so we propose a Monte Carlo approach to state estimation.
Consider a search where we know there is exactly one vent.
We can sample a number of possible vent locations from our
prior distribution and compute for each of them what the
characteristics of the plume might be, using our observation
model in the forward direction. As we collect observations
with the vehicle, samples that predict the actual observations
poorly are discarded, and those that predict well are multi-
plied by resampling. The result is a set of sampled vent lo-
cations that with appropriate action choices should converge
on the true vent location. To cope with the fact that we have
a continuous state space, we smear out the well perform-
ing samples over nearby locations by transforming the set of
point samples into a continuous distribution, for example by
treating each sample as the mean of a weighted Gaussian,
and then sample from the Gaussian mixture.

In practice there could be multiple vents all contributing
to the plume, so the model proposed above is unrealistic.
The possibility of multiple vents means that the state space
consists of the locations of an unknown number of vents.
As the number of vents rises, the dimensionality of the state
space makes it impractical to sample from. We propose to
solve this problem using a clustering approach similar to the
factored particle filtering approach of (Ng, Peshkin, & Pf-
effer 2002), but with the clusters being dynamically recom-

Figure 5: (a) The result of state estimation: a map of the
likelihood of a vent at any location. (b) A PRM generated
from the vent location map.
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puted as the vehicle moves. For reasons of space we omit the
details here, but the final result is, for every possible event
location, an estimate of the probability of a vent existing at
that location. Figure 5 (a) shows an example density.

Criteria
Imagine that we have constructed a probability map of the
type described above. We cannot allocate values directly to
the physical states (vehicle poses), because reward must be
a function of information, and we are planning the gathering
of future information. There are several possibilities related
to the value of increased confidence about vent presence and
location within an area. We might reward the reduction in
the sum of the entropy at each point in the map. This is
similar to the infotaxis approach of Vergassola et al. (Ver-
gassola, Villermaux, & Shraiman 2007) where the objective
is to maximise the local reduction in the entropy of the belief
density. In our case we have to reason about the entropy of
a simpler distribution but at every point in the world.

Another criterion, and one that would induce rather dif-
ferent behaviour when optimised, would be to minimise the
probability of failing to spot vents (minimise the number of
false negatives) within a specified search area. If optimised
for certain search field shapes this could naturally generate
often observed strategies such as spiral search, or mowing
the lawn. Finally, whichever of these criteria we use, we also
need to reward for the likely value of the observations taken
from each vent. Suppose, for example, that the vehicle is
rewarded for pictures of a vent, with decreasing rewards for



increasingly similar views to those already taken. Those re-
wards must also take into account the likelihood of the pres-
ence or absence of the vent in the view, thus including the
effect of the likelihood of taking a picture of a non-vent.

Planning
As we saw previously, we can represent this problem as a
POMDP over a continuous state, action, and observation
space. Since even discrete POMDPs are intractable for large
state spaces, it’s clear that we can’t hope to solve such a
POMDP optimally. Fortunately, we are generally interested
in a saticficing rather than optimal solution as the intention
is to trade off coverage for quality—the AUV can’t com-
pete with an ROV at the exploration and science, but since it
doesn’t require the continuous presence of a research ship,
and multiple vehicles can be deployed, the amount of seabed
that can be explored is much greater.

The question is how best to produce a satisficing solu-
tion. Here we examine two contrasting approaches. In the
first, we do a minimal amount of approximation in an ef-
fort to build a system that continually integrates new obser-
vations and performs close to optimally but that may po-
tentially behave very differently than a human-planned mis-
sion might. In the second we take a more abstract approach
where human-designed behaviours become the actions we
are planning with. It is possible that the best approach—
taking into account both plan quality and the computation
required to reach it—lies between these two extremes.

Probabilistic road maps (PRM) (Latombe 1991) are a
common approach to the problem of path planning in con-
tinuous spaces. The idea is to sample a random graph in
the space and only allow movement over the edges in the
graph. The approach is typically used in obstacle avoidance,
but can easily be adapted to our domain. Since our state es-
timate provides a distribution over likely vent locations, and
we want to spend much of our time in the highest probability
locations, when we generate the vertices in the PRM graph
it makes sense to place more of them in these high probabil-
ity areas, so we bias the PRM graph by sampling from the
vent location probability densities. An example PRM graph
is shown in Figure 5 (b).

The PRM graph results in a small discrete number of
movement actions and possible vehicle locations rather than
the continuous spaces in the original problem. Since the
edges in the graph may be of different lengths, each will
have a different cost in terms of resources used. We label
the edges with their expected resource usage and take this
into account when selecting which action to perform. If the
vehicle has significant costs to change direction, the vehicle
pose can be included in the PRM graph as an extra dimen-
sion attached to each vertex, and the edge costs will be ap-
propriately higher if direction changes are required to follow
them. Similarly, water currents may affect resource usage
and must be taken into account in edge costs.

Another issue is the continuous resource space. The ap-
proach taken in (Dearden et al. 2003) is relevant here—
resource usage is regressed through actions to estimate the
set of goals achievable given the current state and resources.
Unlike their Mars rover domain, we don’t know with cer-

tainty where the ’goals’ or high-reward states are, so it is
harder to do the analysis. The resource usage distributions
will be much less uncertain here.

Conclusions
In this discussion paper we have described a new and chal-
lenging real-world domain for planning, discussed its for-
malisation, and sketched the types of algorithms that we be-
lieve might be applicable. The key aspects of the problem
are that the goal is to collect information, while the state, ac-
tion and observation spaces are continuous and multidimen-
sional. While we have presented an underwater application,
the same ideas are clearly applicable to other autonomous
science domains, such as planetary rovers.
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