
A Formal Analysis Framework for PLEXIL

Gilles Dowek, Ćesar Muñoz, and Corina S. Păs̆areanu
Ecole Polytechnique, France, National Institute of Aerospace, USA, and Perot Systems/NASA Ames, USA

Gilles.Dowek@polytechnique.fr , munoz@nianet.org and pcorina@email.arc.nasa.gov

Abstract

The Plan Execution Interchange Language (PLEXIL) is a rich
concurrent and reactive language developed by NASA to sup-
port autonomous commanding and monitoring for a variety of
space systems. In this paper, we propose a semantic frame-
work for the analysis of PLEXIL. In particular, the semantic
framework allows for the formal study of properties such as
determinism, compositionality, run to completion, termina-
tion, and stuttering, for different variants of the language. The
framework is organized as a stack of abstract execution rela-
tions that define the small-step semantics of a synchronous
event-driven language. This modular presentation of the lan-
guage semantics enables the instantiation of the framework
to different semantic variants of PLEXIL, and therefore, the
framework serves as a formal designing tool. The mathemat-
ical development presented in this paper has been formalized
and mechanically checked in the Program Verification Sys-
tem (PVS).

Introduction
Plan execution languages are specialized languages used for
specifying control strategies that command and monitor a
variety of systems such as spacecrafts, robots, instruments,
and habitats. These languages vary in sophistication and
in the degree of autonomy that they provide (Vermaet al.
2005). The simplest systems execute linear sequences of
commands at fixed times and provide little autonomy, while
the most sophisticated systems use fully fledged program-
ming languages to encode complex strategies, which take
into account environment changes, and hence provide a high
degree of autonomy. Autonomy is particularly critical for
NASA missions, since NASA robots and spacecraft typi-
cally operate far from Earth so they must take significant re-
sponsibility for their own safe operation. However, the more
complex a system is, the harder it is to predict properties
about command execution, due also to the high uncertainty
in the environment.

The Plan Execution Interchange Language
(PLEXIL) (Estlin et al. 2005; Vermaet al. 2006) is a
high-level plan execution language, developed at NASA to
support autonomous operations in a multi-platform envi-
ronment. PLEXIL programs, calledplans, specify actions
to be performed by anexecutivesystem. A PLEXIL plan
consists of set of processes, callednodes, organized in a tree

structure. Each node is equipped with a set of conditions
that trigger and monitor its execution. PLEXIL execution
is synchronous, i.e., when conditions enable the execution
of several nodes all of them are executed simultaneously,
and reactive, i.e., nodes respond to unexpected changes in
the environment. Indeed, PLEXIL belongs to the family
of synchronous reactive languages such as Esterel (Berry
2000) and Signal (Guernicet al. 1991), where the only
non-determinism allowed originates from the environment.

Typically, the PLEXIL executive is deployed on platforms
with limited computational resources. For that reason, the
language has been designed to be compact and semantically
clear, and at the same time to be deterministic and composi-
tional. Despite its relative simplicity, PLEXIL happens to be
computationally complete, but this computational complete-
ness is not as obvious as for other languages that include
complex control structures as primitive features.

This paper presents a formal framework for specifying
the small-step operational semantics of plan execution lan-
guages based on PLEXIL. This framework has been used as
a designing tool for the developers of PLEXIL and as a ref-
erence for the implementation of the executive system. The
framework is organized as a stack of five abstract relations,
which range from anatomic relationdescribing the evolu-
tion of a single node at a moment in time to anexecution
relation describing the evolution of a plan and its local state
after the occurrence of a series of events. In this layered ar-
chitecture properties on the upper layers depend on abstract
properties on the lower layers. Thus, the framework is robust
to the evolution of the language.

We have worked closely with the PLEXIL development
team to formulate and check key properties of the lan-
guage, such as determinism, compositionality, run to com-
pletion, termination, and stuttering, for different assump-
tions on the language. Our formal framework helped in
proving these properties and in pointing out to the devel-
opers some deficiencies, e.g., compositionality holds only
under certain assumptions. The mathematical development
presented in this paper has been formally specified and ver-
ified in PVS (Owre, Rushby, & Shankar 1992).1

1The PVS development is electronically available athttp://
research.nianet.org/˜munoz/plexil.tgz .

A High Level Description of PLEXIL
PLEXIL plans are generated by automated planners or hu-
man operators, and are interpreted by an executive system
that executes the commands encoded in the plan. The plan
also encodes conditions that monitor the environment, react
to changes in the environment, and feedback communication
to higher-level decision making capabilities. PLEXIL and
its executive system are still under development; their basic
capabilities have been demonstrated on mid-size plans of up
to 2000 lines of code.

The language has been designed to be syntactically simple
but expressive enough to unify many execution languages
and executive systems, and to be interfaced with a variety
of automated planners. To support PLEXIL’s role as an in-
terchange language between multiple systems, the concrete
syntax of the language is defined by an XMLschema. For
simplicity, we phrase our discussion and examples in terms
of a simplified non-XML notation.

Language Features
A PLEXIL plan consists of a hierarchical set ofnodes, which
execute concurrently and communicate through shared vari-
ables. The execution of each node is governed by a set of
conditions(or guards) that encode logical and temporal re-
lationships between nodes and the external environment.
Nodes. There are two kinds of nodes:action nodesthat
perform actions such as commanding systems, assignments
to local variables, calls to pre-defined library functions, calls
back to the planner, etc.; andlist nodesthat provide scope
to a collections of nodes. Thus, a PLEXIL plan has a tree
structure, where the leaves are action nodes, and the root and
the internal nodes are list nodes. A list node is theparentof
the nodes stored in its list, which form itschildren.
Conditions. The execution of each node is driven and mon-
itored by a set ofconditions. Startandendconditions spec-
ify when a node should start and end execution, respec-
tively, skipconditions specify when the execution of a node
can be skipped, andrepeatconditions specify when the ex-
ecution of a node should be iterated.Pre and post con-
ditions are checked before and after each node execution,
while invariant conditions are checked during node execu-
tion. When a pre, post, or invariant condition fails, the ex-
ecution of the node is aborted and the node is marked as
failed. In PLEXIL, there is a distinction betweengatecon-
ditions, which are continuously monitored, e.g., start, end,
skip, and invariant conditions; andcheckconditions, which
are checked upon request during a node execution, e.g., pre,
post, and repeat conditions.
Lookups. The execution senses the external world via
lookup operations that read measurements from external
variables, e.g., temperature, time, rover speed, etc. There
are three types of lookups:LookupNow returns the latest
value of an external variable,LookupOnChange returns
a value only when it has changed according to a specified
threshold, andLookupWithFrequency which returns a
new value according to a specified frequency.
Variables. Each node contain a set of local variable
declarations of type integer, boolean, float, string, or

time. The scope of local variables is the sub-tree where
they are declared. The domain of variables is extended
with an additional valueUnknown to account for un-
defined values. In particular, conditions are evaluated
using a three valued logic over an extended Boolean
domain True , False , and Unknown. In addition
to the explicitly declared variables, each node hasim-
plicit variables, such as thestatusof the node execution,
i.e., Inactive , Waiting , Executing , Finishing ,
IterationEnded , Failing , or Finished , and the
node outcome, i.e.,Skipped , Success , Failure .2

Control Structures. The only control structures provided
by PLEXIL are the node conditions, e.g., start, end, skip,
and repeat; and the tree structure of the plan, e.g., children
nodes are activated in parallel by their parents. Standard
programming control structures such as sequences, if-then-
else, while-loops, etc., are not primitive in PLEXIL but they
can be simulated using those basic features.

Example. Consider the following PLEXIL plan.

Node SafeDrive {
int pictures=0;
Repeat-while:

LookupOnChange(Rover.WheelStuck)==false;
List:
{ Node OneMeter {

Command: Rover.Drive(1);
}
Node TakePic {

Start: OneMeter.status==FINISHED AND
pictures<10;

Command: Rover.TakePicture();
}
Node Counter {

Start: TakePic.status==FINISHED;
Pre: pictures<10;
Assignment: pictures:=pictures+1;

}
}

}

The plan consists of a list nodeSafeDrive that con-
tains three action nodes:OneMeter invokes a command
that drives the rover one meter,TakePic invokes a com-
mand that takes a picture, andCounter counts the number
of pictures taken. The start condition ofTakePic ensures
that the node starts execution only afterOneMeter finished
and variablepictures is smaller than 10. The pre condi-
tion in Counter checks that no more than 10 pictures are
taken. According to the repeat condition inSafeDrive ,
the action nodes are repeated until the rover is stuck. This
information is requested from the environment via a lookup.

Informal Semantics
PLEXIL execution is driven by external events. The set of
events includes events related to lookups in conditions, e.g.,
changes in the value of an external state that affects a gate

2In PLEXIL, the state of a node refers to its execution status.
In this paper, the state of a node refers to all declared and implicit
variables of the node.

condition, acknowledgments that a command has been initi-
ated, reception of a value returned by a command, etc.

The execution of a plan proceeds in discrete time steps,
called macro steps. All the external events are processed
in the order in which they are received. An external event
and all its cascading effects are processed untilquiescence
before the next event is processed; this behavior is known
asrun-to-completionsemantics. A macro step of execution
consists of a number ofmicro steps. A micro step is the
parallel synchronous execution of theatomic stepsof the
individual nodes. We discuss all these notions in more detail
in the next section.

Semantic Framework
The semantic framework is defined in terms of mathematical
structures that represent the external state of the world, the
local state of the nodes, and the evolution of the external and
local states during the execution of a PLEXIL program.

External State
The state of the world at a moment in time is represented by
a setΣ of associationsX = v, whereX is an external variable
andv is its value. A plan does not have direct access toΣ,
but to a local copyΓ, which is frequently updated fromΣ.
Variables inΓ are the same as inΣ, but the values may be
different. SetsΣ andΓ are calledenvironments. We say that
an environment isfunctional if each variable appears only
once in the environment, i.e, ifX = v andX = w are both in
the environment, thenv = w. We assume thatΣ andΓ are
both functional environments.

We note that time is not a special concept in PLEXIL.
Indeed, the current implementation of the PLEXIL executive
time-stamps a node when the node is executed. In this case,
we assume that there is variableTime in Σ that is accessed
by the executive via lookup operations as any other external
variable.

Example. The external state of theSafeDrive plan
contains the external variableRover.WheelStuck and
interface variables related to the execution of com-
mandsRover.Drive andRover.TakePicture , e.g.,
Rover.Drive.Completed , when the command has
been completed, andRover.Drive.Aborted , if the
command has been aborted.

Internal State
The internal state of a program is represented by a set of
processesπ with two types of processes:node processes,
e.g.,Node A, which contains the state information of a plan
nodeA, andmemory processes, e.g.,Var x= v, which rep-
resents a local variablex with a valuev.

A node process is a record where each field represents
an implicit variable of the node:identifier (node’s
unique identifier),priority (node’s priority), start
(start condition),end (end condition),skip (skip con-
dition), repeat (repeat condition),pre (precondition),
post (postcondition),inv (invariant), parent (node’s
parent), children (node’s children),status (execu-
tion status),outcome (outcome value), andbody (node’s

body). For instance, in the case of an assignment nodeA,
we haveA.body = x := e. Except forstatus and
outcome , all the other fields of a node state remain invari-
ant during execution. Henceforth, we writeA with [a 1

= v1,..., a n = vn] to denote the node process that is
equal toA in all the fields except ina1, . . . ,an, where it has
the valuesv1, . . . , vn, respectively.

We assume thatπ is well-formedin the following sense:

• Node identifiers are unique, i.e.,Node A ∈ π,
Node B ∈ π, and A.identifier =
B.identifier , impliesA = B.

• Local variables are uniquely defined, i.e.,Var x= v ∈ π,
Var y= w ∈ π, andx = y , impliesv = w.

• Expressions are well-scoped, i.e., local variables appear-
ing in conditions and assignments are declared in the node
or in one of its ancestors.

Example. The internal state of theSafeDrive plan is rep-
resented by the set

π = { Node SafeDrive ,

Node OneMeter ,

Node TakePic ,

Node Counter ,

Var pictures = 0 }

In the initial state, it holds thatSafeDrive.status =
Waiting , OneMeter.status = TakePic.status
= Counter.status = Inactive .

Expressions
The set of PLEXIL expressions is formed by constant val-
ues, pre-defined functions, basic Boolean and arithmetic ex-
pressions, local variables fromπ, and lookups on external
variables fromΓ. As we are interested in the high-level ex-
ecution semantics of PLEXIL, we model the set of expres-
sion by an inductive abstract data typeExpression with
constructors for values, variables, lookups, and functional
closures (i.e., pairs formed by a function and its arguments).
The type of values is abstract, but we distinguish the values
True , False , andUnknown.

Given environmentΓ and program stateπ, the evaluation
of expressione into valuev in Γ andπ is denoted(Γ, π) `
e ; v. This relation is inductively defined on terms of the
data typeExpression :

[Val]
(Γ, π) ` v ; v

X = v ∈ Γ [Lookup]
(Γ, π) ` X ; v

Var x= v ∈ π [Var]
(Γ, π) ` x ; v

(Γ, π) ` ei ; vi, for all 1 ≤ i ≤ n
(Γ, π) ` f(v1, . . . , vn) = v

[Fun]
(Γ, π) ` (f, [e1 . . . en]) ; v

By abuse of notation, we will write(Γ, π) ` e 6; v to denote
that expressione does not evaluate tov in (Γ, π).

Note that the set of expressions includes only one lookup
rule. In the semantic framework presented in this paper we

outcome=Skipped

outcome=Skipped

pre

outcome=PreFailed

Executing

Finished

Finished

IterationEnded

ancestor_inv_false

ancestor_end_true

start = true

Waiting

true

false,unknown

1

2

3

Figure 1: Transitions fromWaiting

only considerLookupNow andLookupOnChange with-
out a minimum threshold. These two operators are eval-
uated using the same Lookup rule. The modeling in our
framework of the other lookup operators is still subject of
research.

Execution
The very rich structure of the PLEXIL execution mechanism
is specified using asmall-steps semantics(Plotkin 1981) via
five relations:

• The atomic relation, denoted by−→, represents node
state transitions and memory updates.

• Themicro relation, denoted by=⇒, is defined as the syn-
chronous execution of the atomic relation.

• The quiescencerelation, denoted by=⇒↓, is defined as
the run until completion of the micro relation.

• The macro relation, denoted by?→, describes how
PLEXIL reacts to events in the external world.

• Theexecutionrelation, denoted by?→n, is defined as the
n-time step iteration of the macro relation.

We note that atomic and macro relations are the only rela-
tions that are specific to PLEXIL. The other three relations
are based on well-known abstract relations. A technical de-
tail is that the first four relations arecontextual, i.e., they are
defined on a global context. For the atomic and micro rela-
tions the context consists of the external environmentΓ and
the internal stateπ, for the quiescence relation the context
consists of the external environmentΓ, and for the macro
relation the context consists of a family of external envi-
ronments(Σj)j≥0. If → is a contextual relation, we write
C ` a → b to denote that the pair(a, b) belongs to the
relation→ under the contextC.

Atomic Relation. The atomic relation defines the individ-
ual evolution of node and memory processes at a given time.
Those evolutions were originally described by the design-
ers of PLEXIL using an ad-hoc graphical notation (Estlinet
al. 2005). For example, Figure 1 shows the state transition
diagram for a node in statusWaiting .

In our formal framework, we use a notation inspired on
the Chemical Reaction Model (Banâtre & Métayer 1995),
which is a formalism for modeling interactions between par-
allel processes. The atomic relation is written(Γ, π) `
P −→ P ′, where P ⊆ π. For instance, the atomic

rule that corresponds to the transition fromWaiting to
Executing in Figure 1 is written as follows.

(Γ, π) ` A.start ; True
(Γ, π) ` A.pre ; True
A.status = Waiting

[W3a]
(Γ, π) ` Node A−→ Node A with

[status = Executing]

The rule that updates a memory cell of an assignment node whose
status isExecutingis written:

A.status = Executing
A.body = x := e
(Γ, π) ` A.end ; True
(Γ, π) ` A.post ; True
(Γ, π) ` e ; w

[EA3a]
(Γ, π) ` Node A, Var x: v −→ Node A with

[status = IterationEnded ,
outcome = Success] , Var x: w

In total, 38 rules define the atomic relation. The rules are defined
such thatP is a singleton containing a process node, except for
rules that update local variables such as EA3a. In this case,P is a
set of that contains the node process that writes the variables and
the memory processes of the variables to be updated.

Micro Relation. The micro relationΓ ` π =⇒ π′ is defined as:

(Γ, π) ` P1 −→ Q1

. . .
(Γ, π) ` Pn −→ Qn ,

Γ ` π =⇒ π \
⋃

1≤i≤n

Pi ∪
⋃

1≤i≤n

Qi

whereMπ = {P1, . . . , Pn} is the set of node and memory pro-
cesses inπ that are affected by the atomic relation. If two dif-
ferent processes inπ, sayA and B, write to the same variable,
only the update of the process of higher priority is considered,
e.g.,A if A.priority > B.priority , B if B.priority >
A.priority , and none otherwise.

Example. The following PLEXIL plan exchanges the values of the
two variablesx andy .

Node Exchange {
int x = 0; int y = 1;
List: { Node XY { Assignment: x:= y; }

Node YX { Assignment: y:= x; }
}

}

This behaviour is a consequence of the synchronous execution
of atomic rule EA3a during a micro step. In the case that two dif-
ferent nodes attempt to simultaneously write to the same variable,
the conflict is solved by using the nodes’ priorities.

Quiescence Relation.The run-to-completion execution semantics
of PLEXIL states that micro steps are reduced until a stable state
is reached. Formally, the quiescence relationΓ ` π =⇒↓ π′ is
defined as the=⇒-normalized reduction (Marché 1998) ofπ:

Γ ` π =⇒∗ π′

π′ is a=⇒-normal form ,
Γ ` π =⇒↓ π′

where=⇒∗ denotes the reflexive and transitive closure of=⇒.
Thatπ′ is a=⇒-normal formmeans thatπ′ cannot be reduced any
further using the micro relation.

Macro Relation. The macro relation first updatesΓ when an ex-
ternal event has occurred, and then starts a cycle of quiescence. In
PLEXIL, an event occurs when one or more gate conditions are
enabled. In the case of start and end conditions, the guard is en-
abled if it evaluates toTrue . In the case of invariant conditions,
the guard is enabled if it evaluates toFalse .

In our formalism, we do not model events directly, but we as-
sume an abstract predicateevent? (Σ, Γ, π) that triggers the up-
date of values inΓ with those inΣ. Therefore, the macro relation
is defined as follows:

Γ′ =

{
Σi if event? (Σi, Γ, π)
Γ, otherwise,
Γ′ ` π =⇒↓ π′ ,

(Σj)j≥0 ` (i, Γ, π) ?→ (i + 1, Γ′, π′)

wherei is a time step and(Σj)j≥0 is a sequence of environments.
Intuitively, the environmentΣi can be understood as the state

of the world before thei-th macro step. The PLEXIL executive
optimizes the access to the external world by reading the external
variables the first time they are needed during a macro step. These
values are cached such that further lookups during the same macro
step return the same values. In this case,Σi contains the values of
the external variables at the time when they are first read during the
i-th macro step.

We assume that changes to the external world are visible to the
executive only at the beginning and end of macro steps. In prac-
tice, the executive enforces this assumption by queuing events and
processing them one at a time at the end of each macro step. As
we will see, except for compositionality, none of the properties we
have verified requires a concrete definition ofevent? . Hence,
those properties still hold for variants of PLEXIL where an event
always occurs after a macro step or whenΓ is updated only when
Σ changes.

Execution Relation.The execution relation?→n is then-iteration
of the macro relation from the initial state(0, Σ0, π).

Properties
This section presents the main theoretical properties of our seman-
tic framework for PLEXIL and other variants of PLEXIL. All the
properties presented in this section were formally checked in PVS.

Determinism Under Full-Knowledge Hypothesis
If we assume that the sequence of readings of the external world
is knownin advance, then the behavior of a plan can be predicted.
We call that assumption theFull-Knowledge Hypothesis.

Theorem 1 (Determinism) Let (Σj)j≥0 be a sequence of envi-
ronments. For alln, if

1. (Σj)j≥0 ` (0, Σ0, π) ?→n (n, Γ′, π′), and

2. (Σj)j≥0 ` (0, Σ0, π) ?→n (n, Γ′′, π′′),

thenΓ′ = Γ′′ andπ′ = π′′.

In practice, the full-knowledge hypothesis is seldom achieved in
space applications due to uncertainties in the external world. How-
ever, determinism under full-knowledge hypothesis is the property
that guarantees that the behavior of a PLEXIL plan is reproducible
in a simulation environment. Indeed, if the readings of the exter-
nal world are recorded during deployment, determinism states that
the behavior of the deployed plan is the same as the behavior of the
plan executed in a simulation environment that replays the recorded
readings.

Operational Determinism
From an operational point of view, it is important to constrain
the non-determinism to interactions with the external environment.
Operational determinism states that in absence of external events,
the behavior of a PLEXIL plan can be predicted.

We say that a sequence of environments(Σj)j≥0 is n-sterile if
for all k ≤ n, (Σj)j≥0 ` (0, Σ0, π) ?→k (k, Γ′, π′) implies
¬event? (Σk, Γ′, π′).

Theorem 2 (Operational Determinism) Given twon-sterile se-
quences of environments(Σj)j≥0 and (Ωj)j≥0 such thatΓ =
Σ0 = Ω0, if

1. (Σj)j≥0 ` (0, Γ, π) ?→n (n, Γ′, π′), and
2. (Ωj)j≥0 ` (0, Γ, π) ?→n (n, Γ′′, π′′),

thenΓ′ = Γ′′ andπ′ = π′′.

Note that operational determinism does not require that the read-
ings of the external world are known in advance as in the case of
determinism under full-knowledge hypothesis. For operational de-
terminism it is enough that the external world does not generate
events. Furthermore, operational determinism is neither weaker
nor stronger than determinism. Indeed, it is possible to instantiate
our framework such that the resulting language is deterministic un-
der full-knowledge hypothesis, but is not operationally determinis-
tic.

Example. Consider the following plan that performs in sequence
a lookup on an external variable, a finite iteration, and a lookup on
the same variable:3

Node Sequence {
int tempA = 0;
int tempB = 0;
List: {

Node A {
Assignment: tempA := LookupNow(Temp);

}
Node Loop {

int x = 0;
Start: A.status == Finished;
Repeat-while: x < 10;
Assignment: x := x + 1;

}
Node B {

Start: Loop.status == Finished;
Assignment: tempB := LookupNow(Temp);

}
Node C {

Start: B.status == Finished;
Pre: tempA == tempB;

}
}

}

In PLEXIL, all the actions inSequence , including the full it-
eration inLoop , are performed during the quiescence cycle in the
first macro step. The plan finishes in a state where the precondition
of nodeCholds.

Now, assume that the macro relation is defined as follows:

Γ′ = Σi

Γ′ ` π =⇒ π′ ,
(Σj)j≥0 ` (i, Γ, π) ?→ (i + 1, Γ′, π′)

3This example has been extensively discussed by the PLEXIL
team. The version presented here was provided by Michael Iatauro.

i.e.,Γ is always updated and the quiescence cycle is avoided. We
call this semanticsupdated step-by-step. Under this semantics, ev-
ery assignment in nodeLoop takes at least one macro step. There-
fore, when the nodeB is finally executed, the value of the external
variableTempis likely to be different from the saved valuetempB .
Hence, the precondition of the nodeCdoes not necessarily hold.

We can verify that the language defined by the updated step-
by-step semanticsdoessatisfy determinism under full-knowledge
hypothesis, butdoes notsatisfy operational determinism .

Run-to-Completion
The run-to completionsemantics of PLEXIL states that when a
quiescence cycle terminates, it reaches a stable state. In particu-
lar, if no event occurs, this state remains invariant under the macro
relation.

Theorem 3 (Run-to-Completion) Let (Σj)j≥0 be a sequence of
environments. If(Σj)j≥0 ` (i, Γ, π) ?→ (i + 1, Γ′, π′) and
¬event? (Σi+1, Γ

′, π′), then

(Σj)j≥0 ` (i + 1, Γ′, π′) ?→ (i + 2, Γ′, π′).

A natural question that arises from this definition is if a macro
step, or for that matter, a quiescence cycle, always terminates, i.e.,
if for all Γ andπ, there is aπ′ such that

Γ ` π =⇒↓π
′.

This is not always the case as illustrated by the following trivial
example. Since the repeat condition is always true, the first quies-
cence cycle does not terminate.
Node InfiniteLoop {

int x = 0;
Repeat-while: x >= 0;
Assignment: x := x + 1;

}

Termination
In order to gain termination of the quiescence relation, it may be
necessary to constrain the run-to-completion semantics. Consider
the following instantiations of our semantic framework.
• Step-by-Step Semantics: The quiescence relation is defined as

the micro step, i.e.,=⇒↓ ≡ =⇒.

• Broken-Quiescence Semantics: The quiescence relation is de-
fined such that a repeating node goes from execution statusWait-
ing to Waitinga pre-specified number of times during the quies-
cence cycle.
We can verify that these two semantic variants of PLEXIL yield

languages that satisfy determinism, operational determinism, and
termination of macro steps. The step-by-step semantics differs
from the updated step-by-step semantics in the wayΓ is updated.
By ignoring changes toΣ during a macro step, we manage to re-
main deterministic under full-knowledge hypothesis without hav-
ing a zero-time assumption. By keeping a local copyΓ of the ex-
ternal environmentΣ, we gain operational determinism. On the
other hand, it can be easily checked that the step-by-step seman-
tics and the broken-quiescence semantics do not satisfy the run-to-
completion property

Stuttering
The stuttering property states that if the environment does not
change the state of a program does not evolve. Due to the run-
to-completion semantics of PLEXIL, ifΣ does not change after
a macro step, the next macro step is empty. Further macro steps
are empty until, eventually,Σ changes and enables a non-empty
macro step. We say that a sequence of environments(Σj)j≥0 is
n-constantif for all k ≤ n, Σk = Σ0.

Theorem 4 (Stuttering) Let (Σj)j≥0 be a sequence of environ-
ments that isn + 1-constant. If

1. (Σj)j≥0 ` (0, Σ0, π) ?→ (1, Γ′, π′), and

2. (Σj)j≥0 ` (0, Σ0, π) ?→n+1 (n + 1, Γ′′, π′′),

thenΓ′ = Γ′′ andπ′ = π′′.

Compositionality
The compositionality property states that the execution of parallel
processes can be inferred from the independent execution of each
one of them. We have verified that PLEXIL is compositional under
particular assumptions on the concrete definition ofevent? .

Two sets of processesP andQ are said to benon-overlapping
if their corresponding sets of identifiers, e.g., node identifiers and
name of local variables, are disjoint. A predicateevent? is pro-
cess independentif event? (Σ, Γ, P) = event? (Σ, Γ, Q) for
anyΣ, Γ, and non-overlappingP , Q.

Theorem 5 (Compositionality) Let(Σj)j≥0 be a sequence of en-
vironments, andπ andχ be two different PLEXIL programs. For
any concrete definition ofevent? that is process independent, if

1. (Σj)j≥0 ` (0, Σ0, π) ?→n (n, Γ, π′), and
2. (Σj)j≥0 ` (0, Σ0, χ) ?→n (n, ∆, χ′),

then

(Σj)j≥0 ` (0, Σ0, π ∪ χ) ?→n (n, Γ ∪∆, π′ ∪ χ′)

We have identified at least two concrete definitions ofevent?
that satisfy the property of being process independent.

1. event? (Σ, Γ, π) = True .

2. event? (Σ, Γ, π) = (Σ 6= Γ).

The first definition states that an event always occurs at the end
of a macro step. The second definition states that an event occurs
if Σ has evolved. Actually, the PLEXIL executive implements an
optimization of the second definition that first checks if the exter-
nal variables that have changed occur in the program or not. A
priori, this optimized implementation ofevent? does not satisfy
the process independent property. We are currently working on a
weaker assumption onevent? that guarantees compositionality
for a larger set of non-overlapping processes.

Conclusion
We have defined a modular semantic framework where several vari-
ants of PLEXIL can be formally analyzed. In practice, this frame-
work has contributed to the design of the PLEXIL language. In-
deed, we worked with the PLEXIL team to guarantee that the lan-
guage has a clear semantics and that the intended and operational
semantics coincide. For instance, the definition of a language that
satisfies both operational determinism and termination of macro
steps has been the object of an intensive debate during the develop-
ment of PLEXIL. Our formal analysis has shed light on this issue
and, consequently, we propose in this paper a few semantic variants
of PLEXIL where both properties hold.

PLEXIL is evolving and being able to formally check properties
of variants of the language was a goal of our development. This
justifies the modular approach with several relations separating the
description of computations, parallel composition, and interaction
with the environment. We can prove properties of one layer based
on assumptions on the other layers. The entire framework was
specified and mechanically verified in PVS, allowing us to reach
the highest degree of certainty in the proof-checking. It consist of
11 theories. Most of these theories are specific to PLEXIL, but we
have also developed general theories on abstract relations such as

normalized reductions and synchronous reductions with priorities.
In total, these 11 theories include 172 lemmas and 1523 lines of
specification.

From a verification point of view, the contribution of this work
has several dimensions. First, the semantic framework is funda-
mental to the theoretical study of PLEXIL and, thus, to the under-
standing of the the language and its features. Second, it enables
the verification that a particular PLEXIL executive correctly im-
plements the language. Another application of this semantics is the
ability to predict the behavior of a plan, or a family of plans, under
particular scenarios. As a matter of fact, based on this semantics,
we are working on the developement of a verification tool that au-
tomatically checks for properties that encode requirements such as
“no node is repeated after the plan is paused or aborted”. Finally,
a pre-requisite for a definition ofcorrectnessin a plan execution
language is the availability of a formal execution semantics. It is
in this area that we will focus our future research. In particular,
the design of an appropriate specification logic for PLEXIL where
safety and liveness properties can be naturally written and mechan-
ically checked.

Although the work presented in this paper concerns the PLEXIL
language, we believe that the general concepts of our framework,
such as the multi-layered semantics, is applicable to other syn-
chronous languages that have many semantic variations, such as
Statecharts. This work, among others, suggests that formal meth-
ods are now mature enough to be used for programming languages
design and in engineering domains, such as aerospace, where
safety is a major issue.

Acknowledgments
We are thankful to the PLEXIL group and, in particular, to Vandi
Verma and Mike Iatauro, for providing invaluable insights on the
intended semantics of PLEXIL.

References
Ban̂atre, J.-P., and Ḿetayer, D. L. 1995. Gamma and the chemi-
cal reaction model. InProceedings of the Coordination ’95 Work-
shop. Londres: IC Press.

Berry, G. 2000. The foundations of Esterel. InProof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press.

Estlin, T.; J́onsson, A.; P̆as̆areanu, C. S.; Simmons, R.; Tso,
K.; and Verma, V. 2005. Plan Execution Interchange Language
(PLEXIL). NASA Technical Memorandum.

Guernic, P. L.; Gautier, T.; Borgne, M. L.; and Maire, C. L. 1991.
Programming real-time applications with SIGNAL. InProceed-
ings of the IEEE, Volume 79(9), 1321–1336.

March́e, C. 1998. Normalized Rewriting: an unified view
of Knuth-Bendix completion and Gröbner bases computation.
Progress in Computer Science and Applied Logic15:193–208.

Owre, S.; Rushby, J.; and Shankar, N. 1992. PVS: A prototype
verification system. In Kapur, D., ed.,11th International Con-
ference on Automated Deduction (CADE), volume 607 ofLecture
Notes in Artificial Intelligence, 748–752. Saratoga, NY: Springer-
Verlag.

Plotkin, G. D. 1981. A structural approach to operational seman-
tics. Technical Report DAIMI FN–19, Computer Science Depart-
ment, Aarhus University, Aarhus, Denmark.

Verma, V.; J́onsson, A.; Simmons, R.; Estlin, T.; and Levinson,
R. 2005. Survey of command execution systems for NASA
spacecraft and robots. InPlan Execution: A Reality Check Work-
shop at the International Conference on Automated Planning and
Scheduling (ICAPS).

Verma, V.; J́onsson, A.; P̆as̆areanu, C. S.; and Iatauro, M. 2006.
Universal executive and PLEXIL: Engine and language for robust
spacecraft control and operations. InAmerican Institute of Aero-
nautics and Astronautics Space 2006 Conference.

