
HOTRiDE: Hierarchical Ordered Task Replanning in Dynamic Environments

N. Fazil Ayan and Ugur Kuter
Dept. of Computer Science and

Institute for Advanced Computer Studies
Univ. of Maryland, College Park
College Park, MD 20742, USA
{nfa,ukuter}@cs.umd.edu

Fusun Yaman
Dept. of Computer Science and

Electrical Engineering
Univ. of Maryland, Baltimore County

1000 Hilltop Circle
Baltimore, MD 21250, USA

fusun@csee.umbc.edu

Robert P. Goldman
SIFT, LLC

211 North First Street, Suite 300
Minneapolis, MN 55401, USA

rpgoldman@sift.info

Abstract

One of the assumptions in classical planning is that the en-
vironment is static: i.e., the planner is the only entity that
can induce changes in the environment. A more realistic as-
sumption is that the environment is dynamic; that is, there are
other entities in the world and the actions generated by the
planner may fail due to the operations of these entitites. In
this paper, we describe a planning system, called HOTRiDE
(Hierarchical Ordered Task Replanning in Dynamic Environ-
ments), which interleaves plan generation, execution, and re-
pair in order to work under such circumstances. Our approach
is an extension of SHOP (Simple Hierarchical Ordered Plan-
ner) (Nau et al. 1999), which is a well-known Hierarchi-
cal Task Network planning system. Our experiments with
HOTRiDE in an abstracted version of a military-planning do-
main demonstrates the potential of our approach.

Introduction
One of the assumptions in classical planning is that the en-
vironment is static: i.e., the planner is the only entity that
can induce changes in the environment. A more realistic as-
sumption is that the environment is dynamic; that is, there
are other entities in the world and the actions generated by
the planner may fail due to the operations of these entitites.

In this paper, we describe a planning algorithm, called
HOTRiDE (Hierarchical Ordered Task Replanning in Dy-
namic Environments), which interleaves plan generation,
execution and repair. HOTRiDE is based on the well
known Hierarchical Task Network (HTN) planning system,
SHOP (Simple Hierarchical Ordered Planner) (Nau et al.
1999). An HTN planning system formulates a plan by de-
composing tasks (i.e., symbolic representations of activi-
ties to be performed) into smaller and smaller subtasks un-
til tasks are reached that can be performed directly. The
basic idea was developed in the mid-70s (Sacerdoti 1975;
Tate 1977), and the formal underpinnings were developed in
the mid-90s (Erol, Hendler, & Nau 1996).

In HOTRiDE, we focused on the following issues:

• Adaptation of previous plan segments using SHOP-style
HTN decompositions to account for problems introduced
by executing plans in dynamic environments

• Replanning while preserving elements of the previous
plan in order not to re-compute them over and over again.

Given a planning problem, HOTRiDE first generates a so-
lution plan for that problem. Then, the system starts to exe-
cute this plan. If, during execution, an action fails unexpect-
edly, then HOTRiDE attempts to replan only the part of the
original plan that is related to the failing action. However,
replanning that segment of the plan may certainly affect the
other parts of the original plan. To be able to determine and
eliminate such side effects, HOTRiDE uses a data structure,
called a dependency graph, which contains the derivation
tree for the generated plan and the causal links between the
nodes of that tree. The causal links show the relationship
between the effects of an action to be executed now in the
plan and the task decompositions occurring in future.

We have implemented a prototype of the HOTRiDE sys-
tem and tested it on a Noncombatant Evacuation Operations
(NEO) planning domain. The results of one set of experi-
ments showed that HOTRiDE is able to generate plans and
revise those plans if their executions fail until the goal tasks
are successfully accomplished. We also did another set of
experiments to investigate the quality of revisions made by
HOTRiDE to the original plan and the results of those ex-
periments confirmed that HOTRiDE does revisions to the
original plan by preserving the actions accomplished so far
as much as possible and modifying only the necessary parts
of the original plan.

Background
We use the same definitions for states, actions, primitive and
nonprimitive tasks, task networks and planning problems as
in (Nau et al. 1999). We summarize our definitions below.

We formalized a planning domain as a deterministic finite
state-transition system (S, A, γ) where S is the finite set of
all possible states of the world, A is the finite set of all pos-
sible actions, and γ is the state-transition function defined
as γ : S ×A → S ∪ {⊥}.

An HTN planning problem description consists of the fol-
lowing: the initial state (a symbolic representation of the
state of the world at the time that the plan executor will begin
executing its plan) and the goal task network (a set of tasks to
be performed, along with some constraints over those tasks
that must be satisfied).

A solution to an HTN planning problem is a plan; i.e., a
sequence of actions that, when executed in the initial state,
performs the desired tasks. The execution of an action is



successful if γ(s, a) 6= ⊥ after we observe the state s to
execute a in; otherwise, the execution of a is not successful;
i.e., we say that it is failed.

In order to generate solutions for the planning problems,
an HTN planner uses an HTN domain description that con-
tains two kinds of knowledge artifacts: methods and oper-
ators. HTN planners may have other kinds of knowledge
artifacts as well. For example, the SHOP planner (Nau et
al. 1999) also has axioms that can be used to infer condi-
tions about the current state.

The operators are like the planning operators used in any
classical planner. The names of these operators are desig-
nated as primitive tasks (i.e., tasks that we know how to
perform directly). Any task that does not correspond to an
operator name is a nonprimitive task.

Each method is a prescription for how to accomplish a
non-primitive task by decomposing it into subtasks (which
may be either primitive or non-primitive tasks). A method
consists of three elements: (1) the task that the method can
be used to accomplish, (2) the set of preconditions need to be
satisfied for the method to be applicable, and (3) the subtasks
to accomplish.

For example, consider the task of moving a collection of
boxes from one location to another. One method might be
to move them by car. For such a method, the preconditions
might be that the car is in working order and is present at the
first location. The subtasks might be to open the door, put
the boxes into the car, drive the car to the other location, and
unload the boxes.

One important assumption we made is that the precondi-
tions of the planning operators or methods are conjunctions
of literals. Based on this assumption, we define the notion of
a causal link between two tasks in a similar way as in classi-
cal planning (Ghallab, Nau, & Traverso 2004). A causal link
between a primitive task a and another task (either primitive
or nonprimitive) t is defined as a pair (e, p) such that e is an
effect of the action that corresponds to a and p is a precondi-
tion of the planning operator for t if t is a primitive task, or
p is a precondition of the HTN method for t if t is nonprimi-
tive. A causal link between a nonprimitive task t and another
task (either primitive or nonprimitive) t′ is a pair (e, p) such
that e is an effect of the action that corresponds to a primi-
tive task that can be generated by successively decomposing
t using the available HTN methods and p is a precondition
of the planning operator for t if t is a primitive task, or p is
a precondition of the HTN method for t if t is nonprimitive.
if there is a causal link (p, e) between two tasks t1 and t2 as
described above, then we say that t1 supports t2.

Given a task t, an HTN trace for t consists of a plan π that
accomplishes t and a subset of the methods from the input
domain description that, when successively applied to t and
its subtasks, generates the plan π. An HTN trace is defined
in terms of HTN trace nodes. An HTN trace node is a tu-
ple N = (t, π, A,D,Q,C) where t is a task (primitive or
nonprimitive), π is a plan achieving the task t, A is the cu-
mulative additions and D is the cumulative deletions made
to the state while achieving the task t. Q is defined as fol-
lows: (1) if t is a primitive task then Q is the preconditions
of t, and (2) else if t is a nonprimitive task then Q is the pre-

conditions of a method that can be applied to t to yield π. C
is the set of pointers to the child nodes of N .

A task-dependency graph is defined as the triple DG =
(DT, CL, PL). In this definition, DT is an HTN trace. CL,
called the causal-links list, is defined as: for every possible
ground atom, p, in the world, CL(p) is a totally ordered list
of heads of ground operator instances that add or delete p
to or from the state respectively. PL, called the predicate-
list, is defined as follows: for every atom, p, that appears
in the precondition list of a task (primitive or nonprimitive),
PL(p) is a totally ordered list of tasks that have p as a pre-
condition.

HOTRiDE
In this section, we introduce HOTRiDE, an HTN planning,
execution, and plan-repairing system. HOTRiDE is based
on a modified version of the SHOP planning algorithm (Nau
et al. 1999). Like SHOP, HOTRiDE does HTN-style task
decompositions to generate the steps of a plan in the same
order that they will be executed. In addition to a plan (i.e.,
a sequence of actions) for an input HTN planning problem,
HOTRiDE also returns a task-dependecy graph as defined
above.

The task-dependency graph generated by HOTRiDE con-
sists of HTN trace nodes that are generated by the modi-
fied SHOP planner and it holds information about the de-
pendencies among the tasks decomposed by SHOP during
planning. We represent such dependencies between tasks
via the causal links among them. Using these causal links,
HOTRiDE can determine which parts of the plan are af-
fected by the result of a certain operator application. If
an action fails during execution, these causal links help
HOTRiDE to find which decompositions in the HTN trace
are not valid anymore and need to be replanned.

Once the dependency graph is computed, we assume that
the plan is passed to a controller for execution. Because the
environment is dynamic, at every execution step the state
of the world is observed and the controller tries to execute
the next plan action at the last observed state. Note that the
observed state sequence might be different than the ones that
are computed during the off-line planning (and replanning)
phase. Thus HOTRiDE does not expect to follow the same
state sequence as the planner projected but if at any point
during the execution, an action fails (i.e., the current state of
the world does not satisfy the preconditions of the action),
then the execution stops and HOTRiDE attempts to generate
a new plan from that state of the world to achieve the goal
tasks given to it at the beginning.

Figure 1 shows a high-level description of the HOTRiDE
plan generation, execution, and repair procedure. First,
HOTRiDE checks every parent of the failed action using the
dependency graph generated before. For example, suppose
the dependency graph in Figure 2 represents the plan be-
ing executed and further suppose that the execution of the
action a fails during execution. The algorithm first identi-
fies the minimal failed parent, a nonprimitive task t in the
dependency graph, and it attempts to generate a new decom-
position for t. The minimal failed parent is found as follows:



Procedure HOTRIDE(g, M)
observe the state s
〈π, D〉 ← SHOP(s, g, M)
if π = FAILURE then return FAILURE
loop
if π = ∅ then return SUCCESS
select the action a ∈ π that does not have any

predecessors and remove it
observe the state s
execute a in s and observe the next state s′

if γ(s, a) = ⊥ then
π ← REPLAN(s′, a, g, D, M)
if π = FAILURE then return FAILURE

end-procedure

Procedure REPLAN(s, a, g, D, H)
t← the failed parent of a that does not have any

failed parents;
if t is a goal task in g then return FAILURE
〈π′, D′〉 ← SHOP(s, t, H)
if π′ = FAILURE then return FAILURE
for each action a′ ∈ π′ do
let t′ be a task in the dependency graph D

that is supported by a′

update the dependency graph D′ to include
a causal link from a′ to t′ of D

D′′ ← D ∪D′

loop
if every task in D′′ is supported then return π′

select a task t′ in D′′ that is not supported
π′′ ← REPLANNOPARENTS(s, t′, g, D′′, H)
if π′′ = FAILURE return FAILURE
π′ ← π′ ∪ π′′

returnπ′

end-procedure

Figure 1: A high-level description of the HOTRiDE proce-
dure.

The parent task of a failed action in the HTN trace of the cur-
rent dependency graph is a failed task since that task cannot
be accomplished due to the failure. For example in Figure 2,
this parent task is t1. Then, if t1 is the first subtask of its
parent task t2, then HOTRiDE checks the preconditions of
the method that decomposed t2 in the current HTN trace.
If there is a precondition of that method that is not satisfied
in the currently observed state of the world, then this means
that t2 is also a failed task. This is because, by the way HTN
planning is done in SHOP and therefore HOTRiDE, the pre-
conditions of the method are the applicability conditions that
must be satisfied in the state where the first subtask, in this
case t1, of the method is to be accomplished.

HOTRiDE checks the parents of a failed task as described
above until it generates a minimal failed task (i.e., a task that
is marked as failed but whose parent is not) or it reaches to
a goal task that does not have any parents in the HTN trace.
This minimal failed task is the next task HOTRiDE attempts
to generate a new HTN decomposition for.

If the failed task t1 is not the first subtask of its parent
t2 as in the HTN trace shown in Figure 2, then HOTRiDE
marks only t1 as the minimally failed task in the hierarchy

Figure 2: An illustration of a task-dependency graph.

and it attempts to decompose t1. If there are no decomposi-
tions for t1 other than the current one or all decompositions
fail, then HOTRiDE marks t1 as well as its parent t2 as a
failed tasks, and it attempts to replan for t2.

After HOTRiDE identifies the nonprimitive task, say t,
that needs to be replanned, it identifies the set of causal links
in the current dependency graph that are supported by the
plan originally generated for t. Then, HOTRiDE invokes
SHOP again to generate a new plan for t and its correspond-
ing dependency graph. Next, HOTRiDE establishes all of
the causal links between the any task in the new dependency
graph and the tasks in the previous dependency graph that
are not accomplished yet. After this operation, there may
some tasks in the original dependency graph that are not
supported by the current plan. For example, in Figure 2,
suppose t3 is one such task after HOTRiDE replanned for
t1. In other words, in the original dependency graph, t3 was
supported by the action a, but when HOTRiDE replanned
for t1, there is no support for t3 in the new plan any more.
In this case, HOTRiDE considers t3 as a failed task and at-
tempts to generate other possible decompositions for t3, if
any. If there is no such decomposition, the algorithm tries
the other possible decompositions for t1. Note that the algo-
rithm does not attempt to replan for the parents of t3 since
they are not relevant to the failure of the task t1 based on
the observed state of the world. In Figure 1, the subroutine
REPLANNOPARENTS is responsible for this operation.

HOTRiDE repeats the above process for every causal link
that is not supported in the new plan generated for the failed
task t. If the algorithm generates a new plan in which all
the causal links are satisfied, it resumes the execution of this
new plan, starting from first unexecuted action. Otherwise,
HOTRiDE calls it self recursively on the parent task of t1 in
the HTN hierarchy.

HOTRiDE repeats the plan repair process above until one
of the following holds: either HOTRiDE generates a plan
that is executed successfully in the world, or the plan-repair
process marks a goal task as failed. In the latter case,
HOTRiDE reports failure.

Note that it is possible that the repaired plan will include
actions that were previously executed in the failed plan. As a



result, the above algorithm allows for duplicate tasks/actions
to be executed later in the process. The reason is that it is not
clear to us at the moment how to differentiate whether an ac-
tion in the repaired HTN and plan is redundant or not. One
solution would be to have a set M of HTN methods designed
for the replanning aspect in mind, where M includes addi-
tional methods that check for effects of already established
subtasks and result in empty task decompositions (hence al-
low skipping some steps). Obviously this solution leaves all
the burden on the domain designer. Another approach would
be to include a mechanism for reasoning about how actions
achieve the goals of the input planning problem so that the
algorithm could infer, that for example, whether an action
appearing a second time in the plan is necessary to establish
a goal or subgoal condition in the world that is not appar-
ent in the HTNs. One way to do this is to include dummy
tasks and methods in the input HTNs so that the precondi-
tions of such methods would need to be satisfied within the
dependency graph generated by HOTRiDE. Finally, another
way might be to generate more expressive explanations for
the dependencies in the HTNs and the plans, similar to the
approach described in (Warfield et al. 2007).

Experiments
In this section, we describe our experiments with a prototype
implementation of HOTRiDE. In our experiments, we used
an abstract version of a Noncombatant Evacuation Opera-
tions (NEO) planning domain. The NEO planning domain
for HTN planning was originally developed and reported
by (Muñoz-Avila et al. 2001). This domain, called NEO
Trans1.1, is an abstracted and simplified version of some of
the transportation tasks that occur in real-world NEO plan-
ning. A NEO involves five primary locations: an assembly
point, a headquarters, an intermediate staging base (ISB),
the NEO site, and a safe haven. The objective is to generate
a plan in order to get from each of these sites to the next one,
while selecting the means of transportation and the route to
be followed.

There are six possible means of transportation: plane, he-
licopter, ship, armored vehicle, car, and on foot. Plane trans-
portation depends on the weather conditions, whether there
are airports at both source and destination, and whether the
environment is suitable for plane transportation or not. Heli-
copter transportation depends on the weather conditions and
whether a helicopter is available or not. Ship transportation
depends on the weather conditions, whether the destination
location is accessible by sea and whether there exists a har-
bor there. An armored vehicle can be used any time if it
is possible to use as a transportation means. Transportation
can be done by car only if the environment in which NEO
will be conducted is not hostile. If the conditions for any of
the previous transportation methods cannot be satisfied then
the transportation is performed by the troops without using
any vehicles.

We have performed our experiments on a 700MHz Pen-
tium III Compaq machine with 128MB RAM. We have cre-
ated 100 random problems for both domains. We have run
HOTRiDE 100 times on each problem and observed the av-
erage values for our measures.

HOTRiDE

SHOP

Figure 3: Number of times goals are accomplished in our
NEO planning domain using SHOP and HOTRiDE to revise
the original plan.

To simulate a dynamic environment and the plan-
execution controller mentioned previously, we have imple-
mented a simulator program that executes the plans gener-
ated by HOTRiDE. The execution of a plan is performed on
the action basis and while executing the actions in a plan,
the simulator randomly decides whether to fail a particular
action or not. In our experiments, we assumed that the fail-
ure of an action means at least one of its preconditions be-
comes false, although it was true during the plan generation
phase. Without loss of generality and for the sake of sim-
plicity, we assumed that only one precondition of an action
can be failed at a time by the simulator.

Figure 3 displays the number of times the goal tasks are
accomplished in the dynamic environment. The two algo-
rithms SHOP and HOTRiDE are used to revise the original
plan whenever it fails. These results demonstrate that the
number of times HOTRiDE can revise a plan is usually more
than that of SHOP. The results show that SHOP is not de-
signed to produce a new plan starting from the current state
of the world. In the case of HOTRiDE whether it is the cur-
rent state or the initial state does not make much difference
since it first tries to find a local plan at the point of failure.

When a domain expert is available and the planning do-
mains and the kinds of failures in those domains are simple
enough, sometimes it might be possible to modify the HTNs
used by SHOP to include “bookkeeping methods,” which
(1) allow SHOP to remember where the plan had failed dur-
ing execution, (2) help SHOP initiate planning from that
point. Under such circumstances, SHOP would be able to
do replanning on its own without the dependency mecha-
nisms we developed for HOTRiDE. In order to investigate
this, we have created a simplified version of the NEO do-
main based on the original one described above and our as-
sumption that actions fail in the domain only because one of
their preconditions fail. Here, we encoded some bookkeep-
ing HTN methods. As a very simple example for such meth-
ods, consider the following HTN method for transportation
of a vehicle in the NEO world from a source location ?x to
a destination ?y:



Figure 4: Number of times that goals are accomplished in
our NEO planning domain using SHOP and HOTRiDE to
revise the original plan. In our experiments, the number of
goals accomplished by SHOP and HOTRiDE were generally
the same; hence, the curves for both SHOP and HOTRiDE
shown above.

(:method
:task (planTransport-to ?x ?y)
:preconditions

((airport ?x) (airport ?y) (tm ?x ?y FIXEDW)
(weather TFP) (windStrengthOK ?x ?y FIXEDW))

:subtasks
((planDistance ?x ?y FIXEDW)
(planDuration ?x ?y FIXEDW)))

The following HTN method is a simple modification of
the one above that does some bookkeeping checks in the
state of the world:

(:method
:task (planTransport-to ?y)
:preconditions

((at ?x) (airport ?x) (airport ?y) (tm ?x ?y FIXEDW)
(weather TFP) (windStrengthOK ?x ?y FIXEDW))

:subtasks
((planDistance ?x ?y FIXEDW)
(planDuration ?x ?y FIXEDW)))

The precondition (at ?x) above is used the check the cur-
rently observed state of the world in order to verify if the
vehicle is still at ?x as it was the vehicle’s source location
or if it is move somewhere else during planning without the
control of the planner.

Figure 4 displays the number of times the goal tasks are
accomplished in this modified NEO domain with bookkeep-
ing methods for replanning in SHOP. These results demon-
strate that in this domain HOTRiDE and SHOP have nearly
same replanning power. The modifications to the domain
and the bookkeeping HTN methods enabled SHOP to find
a new plan by simply remembering the previously accom-
plished steps and bypassing some replanning steps that are
sensitive to the initial state. In the case of HOTRiDE the
modifications in the domain had no effect on its perfor-
mance.

Finally we compared the number of actions performed to
achieve the goals. Figure 5 demonstrates the average num-
ber of actions performed to achieve goals. In this particu-
lar version of the NEO domain, the optimum plan length is

SHOP

HOTRiDE

Figure 5: Average number of actions to accomplish goals in
our NEO planning domain.

12. In our experiments, HOTRiDE always accomplished the
goals performing 12 actions. This shows that, HOTRiDE’s
plan repair procedure usually keeps the modifications to the
original plan at a minimum level, while generating a suc-
cessful plan at the end. In the case of SHOP the number of
actions was generally greater than 12 because of replanning
previously achieved goals and trying to re-achieve them or
simply performing some bookkeeping actions.

Related Work
The HTN planning formalism is introduced in (Erol,
Hendler, & Nau 1994; 1996). The SHOP algorithm is a
domain-independent HTN-based planning algorithm that is
presented in (Nau et al. 1999). Recently, there has been
an interest from several research to develop planning sys-
tem that include plan adaptation and replanning capabilities
to deal with any unexpected events while the plans are exe-
cuted in a real-world environments. Among those, the most
related previous work is a recent study reported in (Warfield
et al. 2007) on a planning algorithm called RepairSHOP,
which is designed for replanning with HTNs. In terms of
the basic plan-adaptation ideas, RepairSHOP is very similar
to HOTRiDE since both approaches aim to generate plans
using HTN task decompositions and replan when something
unexpected happens during execution and the plan fails.
The difference between the two approaches is the underly-
ing techniques to deal with replanning. In HOTRiDE, we
focused on simple, and hopefully, efficient ways to keep
track of dependencies among the tasks that the SHOP plan-
ner would generate during planning and aimed to modify
those dependencies as much as possible. RepairSHOP uses
a more general and expressive data structure called, Goal-
Graph, to accomplish the same objective. Although using
a GoalGraph would enable planner to produce explanations
for task dependencies and replan based on those explana-
tions, it is not clear to us how the two approaches would
compare in terms of kinds of dependencies they can deal
with and the efficiency they deal with them. We consider
this comparison as an important next step in our research
and leave it to a future study due to space and time limita-
tions here.

The work reported in (Wang & Chien 1997) describes a



planning algorithm that allows replanning using Hierarchi-
cal Task Networks (HTN) as formalized in(Erol, Hendler, &
Nau 1994). This paper proposes an extension to the DPLAN
algorithm (Chien et al. 1996) in order to perform replanning.
Like HOTRiDE, the technique presented in the paper aims
for the following: (1) to interleave plan generation and ex-
ecution, (2) to be able to replan when unexpected changes
occur in dynamic environments, and (3) to make minimal
revisions to the original plan. Unlike HOTRiDE, this tech-
nique assumes that some of the predicates in the initial state
of the world can be restored at the state the plan fails. We
did not make this assumption since we believe that it may
not be applicable in some real world domains such as the
NEO-Trans-1.1 planning domain that we considered for our
experiments and described above.

Continuous Planning and Execution Framework (CPEF)
is introduced in (Myers 1999). CPEF is described as a first
step in the development of a planning system that employs
plan generation, execution, monitoring, and repair capabil-
ities to solve complex tasks in unpredictable and dynamic
environments. CPEF assumes that plans are dynamic, that
is, they must be evolving in response to the changes in the
environment. It is reported in the paper that CPEF leverages
several AI techniques as components. Mainly, CPEF em-
ploys HTN planning and plan repair capabilities by the help
of the SIPE-2 system (Wilkins 1988).

The Advisable Planner (AP) (Myers 1996) supports user
provision of advice to guide the process of plan generation.
The Procedural Reasoning System (PRS) (Georgeff & In-
grand 1989) is employed to have a reactive plan execution
control that integrates goal-oriented and event-driven activ-
ity in a flexible hierarchical framework.

A survey of existing replanning techniques are described
in (Russell & Norvig 2003). Other studies related with re-
planning and plan repair in planning dynamic environments
include (Schoppers 1987), (Verfaillie & Schiex 1994), and
(Bernard et al. 1998).

Conclusion
In this paper, we have described an HTN-based planning
system, called HOTRiDE, which is capable of plan gener-
ation, execution, and repair. Given an HTN planning prob-
lem, HOTRiDE uses a variant of the well-known planner
SHOP (Nau et al. 1999). to generate a plan for that plan-
ning problem. Then, HOTRiDE starts to execute that plan in
the world. If an action fails during execution, HOTRiDE
attempts to revise the original plan by preserving the ac-
tions accomplished so far as much as possible and modi-
fiying only the necessary parts of the original plan. The
results of our preliminary experiments demonstrated such
behavior: the length of the plans found by HOTRiDE in
the experiments was always optimum which indicates that
HOTRiDE preserves the goals accomplished previously and
makes minimum number of changes in the original plan.

Acknowledgments. This work was supported in part
by DARPA’s Transfer Learning and Integrated Learning
programs, NSF grant IIS0412812, and AFOSR grants

FA95500510298, FA95500610405, and FA95500610295.
The opinions in this paper are those of the authors and do
not necessarily reflect the opinions of the funders.

References
Allen, J. F.; Hendler, J.; and Tate, A., eds. 1990. Readings
in Planning. Morgan Kaufmann.
Bernard, D.; Dorais, G.; Fry, C.; Jr, E.; Kanefsky, B.;
Kurien, J.; Millar, W.; Muscettola, N.; Nayak, P.; Pell,
B.; Rajan, K.; Rouquette, N.; Smith, B.; and Williams, B.
1998. Design of the remote agent experiment for spacecraft
autonomy. In IEEE Aerospace Conference.
Chien, S.; Govindjee, A.; Estlin, T.; Wang, X.; and Jr.,
R. H. 1996. Integrating hierarchical task network and
operator-based planning techniques to automate operations
of communications antennas. IEEE Report.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN planning:
Complexity and expressivity. In AAAI.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complex-
ity results for hierarchical task-network planning. AMAI
18:69–93.
Georgeff, M., and Ingrand, F. 1989. Decision-making in
an embedded reasoning system. In IJCAI.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Muñoz-Avila, H.; Aha, D. W.; Nau, D. S.; Weber, R.; Bres-
low, L.; and Yaman, F. 2001. SiN: Integrating case-based
reasoning with task decomposition. In IJCAI.
Myers, K. 1996. Advisable planning systems. In Tate, A.,
ed., Advanced Planning Technology. AAAI Press.
Myers, K. L. 1999. A continuous planning and execution
framework. AI Magazine 63–69.
Nau, D. S.; Cao, Y.; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple hierarchical ordered planner. In Dean, T.,
ed., IJCAI, 968–973. Morgan Kaufmann Publishers.
Russell, S., and Norvig, P. 2003. Artificial Intelligence, A
Modern Approach (Second Edition). Upper Saddle River,
NJ: Prentice-Hall.
Sacerdoti, E. 1975. The nonlinear nature of plans. In IJ-
CAI, 206–214. Reprinted in (Allen, Hendler, & Tate 1990),
pp. 162–170.
Schoppers, M. 1987. Universal plans for reactive robots in
unpredictable environments. In IJCAI, 1039–1046.
Tate, A. 1977. Generating project networks. In IJCAI,
888–893.
Verfaillie, G., and Schiex, T. 1994. Solution reuse in dy-
namic constraint satisfaction problems. In AAAI, 307–312.
Wang, X., and Chien, S. 1997. Replanning using hierar-
chical task network and operator-based planning. In ECP.
Warfield, I.; Hogg, C.; Lee-Urban, S.; and Munoz-Avila,
H. 2007. Adaptantion of hierarchical task network plans.
In FLAIRS-2007.
Wilkins, D. E. 1988. Practical Planning: Extending the
Classical AI Planning Paradigm. San Mateo, CA: Morgan
Kaufmann.


