
Analysis of a Benchmark Generator for the Reactive Scheduling Problem

Amedeo Cesta
ISTC -CNR

Italian National Research Council
amedeo.cesta@istc.cnr.it

Nicola Policella
ESA/ESOC

European Space Agency
nicola.policella@esa.int

Riccardo Rasconi
ISTC -CNR

Italian National Research Council
riccardo.rasconi@istc.cnr.it

Abstract

This paper performs an analysis aiming at the produc-
tion of a benchmark generator for Reactive Scheduling
problem instances. The problem of monitoring the ex-
ecution of a schedule and repairing it every time it is
deemed necessary because of the action of unexpected
exogenous events, is a rather hot topic in the research
community; even more so, since the industry is increas-
ingly becoming aware of the advantages that might be
obtained through the use of dynamic schedule manage-
ment systems, in terms of efficiency of the production
lines and cost abatement.

Introduction
The validity of a schedule is often very short. Scheduling
is defined in theory as the problem of assigning a start time
to a set of activities (or tasks) subject to a number of con-
straints. But the synthesis of initially feasible schedules is
hardly ever sufficient; in real-world working environments,
unforeseen events tend to quickly invalidate the schedule
predictive assumptions and bring into question the consis-
tency of the schedule’s prescribed actions.

As a consequence, in order to be practically exploited in
the real world, schedule management must be dealt with
as a twofold process: the synthesis of an initial solution,
which exhibits some desired characteristics (“static” or “pre-
dictive” scheduling), and the deployment of a number of
methodologies dedicated to the continuous preservation of
solution consistency and quality (“dynamic” or “reactive”
scheduling). This second aspect of schedule management is
necessary because of the inherent uncertainty that permeates
the working environments where the produced schedules are
normally expected to perform, uncertainty which eventually
tends to spoil the schedule’s original characteristics.

In order to fill the previous gap, a description of a bench-
mark generator instance is presented, along with a novel
proposal suggesting how various metrics might be profitably
employed to the twofold aim of either guiding the produc-
tion of benchmark sets (basing on the difficulty assessment
of the associated scheduling problem instances), and mea-
suring the quality of the new solutions produced by each
re-scheduling procedure, performed at schedule execution
time.

The main objective of the research work we present aims
at producing a general framework for scheduling problems:

in the present paper we focus on the production of a Reac-
tive Scheduling Testset Generator, as we recognize this as
being a necessary instrument to assess the validity of the
various rescheduling methodologies. The presence of this
benchmark should reveal crucial to boost research on reac-
tive scheduling and consequently, on general scheduling.

The Reactive Scheduling Problem:
an Operational Interpretation

Because of its several real-world applications, the schedul-
ing problem has been widely studied by many scientific
communities, such as the Artificial Intelligence (AI), Man-
agement Science (MS), and Operations Research (OR). Yet,
these different approaches share a common drawback: they
tend to neglect the need to execute the found solutions in real
working environments, where a variety of possible events
may invalidate the current schedules making some proper
and quick adjustments necessary (Mc Kay, Safayeni, &
Buzacott 1988; Aytug et al. 2005). All this considered, it
is initially of fundamental importance to introduce a broader
definition of scheduling problem which must comprise the
following two aspects:
- the static sub-problem: given a set of activities (or tasks)

and a set of constraints, it consists in computing a con-
sistent assignment of start and end times for each activ-
ity. The solution of this problem is computed according
to some optimization criteria, that depend on the quality
measures of interest: a primary concern is often the to-
tal completion time (makespan), that should normally be
kept as low as possible;

- the dynamic sub-problem: it consists in monitoring the
actual execution of the schedule and repairing the current
solution, every time it is necessary. The need to revise
the schedule arises as a consequence of exogenous event
occurrences1.
Despite the limited level of attention received so far, in the

very last years the reactive scheduling problem is undergo-
ing an increasingly systematic study in the research commu-
nities: yet, in order to build a general experimental frame-
work for reactive scheduling problem instances, the lack of

1Obviously, the static sub-problem aspect represents the com-
monly known Scheduling Problem, while the Reactive Schedul-
ing Problem pertains to the dynamic sub-problem aspect of the ex-
tended scheduling problem definition.



a more detailed definition that takes into account both the
qualitative and the quantitative aspects of the problem is ev-
ident.

The key idea is to define the reactive scheduling problem
in terms of the disturbances injected to the base schedul-
ing problem. Each disturbance will tend to modify the base
problem’s initial structure, within some extent: the difficulty
of each reactive scheduling problem instance can therefore
be assessed in terms of how much the base problem’s ini-
tial characteristics have deviated from the initial values; the
quality of the re-scheduling procedures can be assessed de-
pending on how well they succeed in restoring/maintaining
such desired characteristics in the solution as the outcome
of the revision process. In this paper we therefore provide
an analysis of the dynamic sub-problem, we identify a num-
ber of particularly meaningful events which are likely to oc-
cur during schedule execution, and, finally, we show how
these events may represent the building blocks for reactive
scheduling benchmarks.

Within this perspective, the reactive scheduling problem
is most naturally represented as an optimization problem;
in this analysis, we focus on a particular family of schedul-
ing problems, known as Project Scheduling problems, which
may be defined as follows:
Definition 1 (Project Scheduling Problem (PSP)) The
Project Scheduling Problem can be formalized as a tuple
〈V, C,R〉 where:
- V is the set of activities that have to be scheduled. Each

activity ai ∈ V is characterized by a start time si and a
duration pi;

- C is the set of temporal constraints that exist between ac-
tivity pairs < ai, aj >. The temporal constraints impose
limitations on either single and mutual allocations in time
of the activities to be scheduled;

- R is the set of renewable resources, each characterized
by a maximum capacity Cmax

k ; the fact that the resources
have limited capacity, represents a further constraining
factor for the temporal allocations of the activities (re-
source constraints).

A solution S of the previous problem is a complete assign-
ment to the activity start times that satisfies all the temporal
and all the resource constraints. Given a solution quality
measure m, the optimization version of the PSP is to find a
feasible schedule that optimizes the value of m.

Very informally, a schedule under execution at time t =
tE can be defined as a partition V(t) = V≺tE

∪V≈tE
∪VÂtE

where V≺tE
is the set of the schedule activities that have al-

ready terminated, V≈tE
is the set of the activities are cur-

rently under execution, and VÂtE is the set of the activities
that have yet to begin, for tE = i, i ∈ {0, 1, . . . ,∞}.

Before producing a formal definition of the environmental
uncertainty that permeates the execution of a schedule, we
need to introduce the following concept of Instant Modifier:
Definition 2 (Instant Modifier) Let P = 〈V, C,R〉 be a
scheduling problem and Sk ∈ S(P ) be one of its solutions
under execution at the instant t = tE (Time of Execution):
an Instant Modifier modZ(t) is an operator whose applica-
tion modZ(tE) ∗ P on the problem P , produces an alter-
ation of the component Z = {V, C,R} to be applied at time
t = tE .

The changes carried out by the modifiers to the inter-
ested Z set vary from the insertion and/or deletion of ele-
ments to/from Z, to simple alterations of the characteristics
of those elements.

Based on the graph representation of a scheduling prob-
lem P = GP (VP , EP ), we can exploit the notion of Instant
Modifier to give an alternative definition of solution S:
Definition 3 (Solution of a Scheduling Problem) Let
P = 〈V, C,R〉 be a scheduling problem: a consistent
solution Sk ∈ S(P ) of the problem P can be defined as
follows:

Sk = modC,k
? ∗ P

where modC,k
? is the instant modifier that changes the con-

straint set C, integrating it with the solution constraints set
CS = {cS

1 , cS
2 , . . . , cS

r }:
C ← C ∪ CS

One issue worth being remarked is that, as confirmed in
Definition 3, both the scheduling problem instances P and
their relative solutions S ∈ S(P ) share the same structure.
In fact, both can be formalized through a tuple 〈V, C,R〉, the
difference being in the number and/or allocation of the con-
straints ci ∈ C that are necessary to eliminate the temporal
and/or resource conflicts present in P .

Notice that a scheduling algorithm can be understood as
the application of the modifier modC

? . Notice also that
modC,k

? extracts the kth solution from P ; in general in fact,
a scheduling problem P admits many solutions.

The analysis of the base problem’s structure and main fea-
tures is essential to derive a meaningful characterization of
the associated reactive scheduling problem. All this consid-
ered, we provide the following definition:
Definition 4 (Reactive Scheduling Problem (RSP))
Given a base scheduling problem Pbase = 〈V, C,R〉, the
Reactive Scheduling Problem can be formalized as a tuple
〈Pbase,∆V(t), ∆C(t),∆R(t), t0〉 where:

- ∆V(t) = modV(t) ∗ Pbase is the set of modifications
applied to V = {a1, . . . , an} ∈ Pbase by the modifier
modV(t), at time t;

- ∆C(t) = modC(t) ∗ Pbase is the set of modifications
applied to C = {c1, . . . , ck} ∈ Pbase by the modifier
modC(t), at time t;

- ∆R(t) = modR(t) ∗ Pbase is the set of modifications
applied to R = {r1, . . . , rn} ∈ Pbase by the modifier
modR(t), at time t.

A solution Sexec of the RSP is a solution to the new Schedul-
ing Problem Pexec defined by the tuple 〈V + ∆V(t), C +
∆C(t),R+ ∆R(t)〉, that is:

Sexec = modC,k
? ∗ Pexec

The reader should notice that solving the RSP is differ-
ent from solving an ordinary PSP, because of the presence
of the time variable t. Being the RSP a dynamic prob-
lem, the time component plays an essential role in the solv-
ing process of the RSP instances. For the time being, it is
important to highlight that, given a base scheduling prob-
lem Pbase and three modification sets ∆V(t),∆C(t),∆R(t),
the following tuples 〈Pbase,∆V(t),∆C(t),∆R(t), t1〉 and



〈Pbase, ∆V(t), ∆C(t), ∆R(t), t2〉 represent two different
RSPs, as the mere passing of time inherently modifies the
reallocation possibilities in case a re-scheduling is neces-
sary. Intuitively, a re-scheduling action triggered by the oc-
currence of an exogenous event, may yield different results
depending on the number of activities that have begun the
execution or that have already terminated, and such number
is obviously a function of time.

We now provide the definition of the optimization version
of the Reactive Scheduling Problem, as it reveals more in-
teresting for our purposes:
Definition 5 (Reactive Scheduling Opt. Problem (RSOP))
Given a base optimization scheduling problem
P opt

base = 〈V, C,R,m,O〉 and a solution Sopt
base that

optimizes the value of the objective function m, the Reactive
Scheduling Optimization Problem can be formalized as the
tuple 〈P opt

base,∆V(t),∆C(t),∆R(t),m, t0〉 (see Definition
4), where the solution Sopt

exec of the RSOP is one that
optimizes the value of m.

In the remainder of this work, the term “problem” will
be interchangeably used in both the scheduling and reactive
scheduling acceptation; though all efforts will be made to
underscore the specific context we will be referring to, the
reader is invited to pay particular attention to this important
differentiation.

Schedule Execution and Exogenous Events
The previous analysis lays the foundations for the produc-
tion of a usable benchmark for reactive scheduling prob-
lems, as it introduces a formalism that allows to approach
schedule dynamic management from a quantitative stand-
point. The uncertainty aspects which normally permeate the
physical environments have in fact been taken into account
through the concept of instant modifier, which can be con-
sidered as the general representation of an executional event.
In what follows, we try to further specify such modifiers
toward operational templates strictly related to the specific
scheduling technology employed. The most relevant aspects
of real world uncertainty will be therefore modeled through
proper instantiations of such templates, and the benchmarks
we are pursuing to develop will be based on the production
of sequences of such instantiations.

In the realm of scheduling, real world uncertainty is often
singled out in the following points: activity delay, e.g., wait-
ing until all passengers summon might delay the beginning
of a trip; growth of activity processing time, e.g., making
many stops inevitably extends the duration of the journey;
lowering of resource availability, e.g., breaking an engine
part has repercussions on the planned line of action; varia-
tions in the number of activities, e.g., adding an unscheduled
detour adds up a new task to be accomplished; change in the
mutual ordering of the activities, changing the priority or-
der of some activities might require to re-think the journey’s
plan.

The Components of the Benchmark Sets
In the production of a benchmark set for scheduling prob-
lems, a number of different issues must be properly ana-
lyzed. As we have said, one such issue is related to the iden-
tification of the type of unexpected events which can spoil

Figure 1: Sequential injection of two temporally spaced
events.

the execution of the solution; another point is the introduc-
tion of methodologies to assess the difficulty of a benchmark
instance. Yet, as the problem for which we are devising the
benchmark is a dynamic problem, one more subtle point re-
quire attention: the temporal spacing among the events.

While the importance of the first two aspects is evident,
the last point requires a further remark: as we have seen in
Definition 2, in order to “simulate” a dynamic behavior we
need to specify the exact moment in time when the given
events will occur: the temporal variable t serves this pur-
pose, and is of great importance to “control” the temporal
aspects of the benchmark sets injection, as well as the ur-
gency of the related reactive scheduling problem instance.
In the next sections all the issues encountered in the design
of our testset generator will be discussed in detail.

Temporal separation of the events Recalling Definition
2, we can see that the problem modifiers have been defined
through the use of a temporal parameter to highlight the
fact that such operators could be launched at any time dur-
ing the execution of the schedule. In the operational use
of the RSP benchmarks, a schedule is supposed to be exe-
cuted and constantly repaired every time a new benchmark
instance (event) is injected; hence, each event must be char-
acterized with a parameter stating the instant in which the
execution simulator system is supposed to acknowledge the
event occurrence. This is done by introducing the parame-
ter taware in the definition of each event, for any event type.
It should be noted that the taware parameter specifies the
“absolute” instant where the specific event is supposed to
happen, and through its use, it is possible to temporally sort
all the generated events and to “fire” them in order of occur-
rence. The reader should not mistaken the event occurrence
time defined by the parameter taware with the temporal in-
stant which involves the same event along the schedule time-
line: the former defines “when” the event will take place; the
latter defines “where” the event is localized. For instance, in
Figure 1 the first event occurs at time taware = 7 but is local-
ized at tloc = 28+duration(a2); the second event occurs at
time taware = 13 but is localized at tloc = 21; the temporal
distance tloc − taware (computation time window) reveals a
good evaluation of the urgency of an exogenous event.

As explained above, the taware parameter is essential to
provide every exogenous event with a precise time of oc-
currence: but why choosing absolute values to define such
parameter, as opposed to linking the taware variable to the
affected activity’s start or end time? There are mainly two
reasons why a “relative” definition of taware cannot be used



in practice: the first reason regards the necessity of gener-
ating reactive scheduling problem benchmarks whose diffi-
culty is as much as possible independent from the partic-
ular re-scheduling technology employed; the second rea-
son is related to feasibility issues: in fact, it is of primary
importance that the dynamic model employed to represent
the continuing schedule execution be reality-consistent at all
times, which cannot be guaranteed if the taware values are
problem-dependent.

Definition of the different exogenous events In order to
define a benchmark set for the reactive scheduling problem,
we refine here the concept of Instant Modifier (modZ(t))
previously introduced. Every modifier entails an alteration
on the Z component of the base scheduling problem; de-
pending on the particular nature of Z, each modification di-
rectly translates into a different type of exogenous event, of
which we provide a detailed parametric definition. For all
event types, the taware parameter is present with the usual
meaning.
• the event edelay , characterizing an activity delay, is de-

fined as:
modC(t) = 〈ai, ∆st, taware〉 (1)

where:
- ai is the activity affected by the delay;
- ∆st is the extent of the delay. Note that in general this

quantity can be negative, in which case the activity is
anticipated;

• the event edur, characterizing a change of an activity du-
ration, is defined as:

modC(t) = 〈ai, ∆dur, taware〉 (2)

where:
- ai is the activity whose duration is affected by the vari-

ation;
- ∆dur is the extent of the duration change (negative or

positive);
• the event eres, characterizing a change of a resource avail-

ability, is defined as:

modR(t) = 〈rj , ∆cap, stev, etev, taware〉 (3)

where:
- rj is the resource involved in the event;
- ∆cap is the extent of the variation in resource availabil-

ity (negative or positive);
- [stev, etev] represents the time interval spanned by the

event. Note that in general this interval can have infinite
width (etev →∞);

• the event eact, characterizing a change of the set of the
problem activities, is defined as:

modV(t) = 〈fa, ak, reqk, durk, estk, letk, taware〉 (4)

where:
- fa ∈ add, remove is a flag that describes whether the

event is aimed at adding or removing the activity iden-
tified by ak to/from the set V;

- reqk = {reqk1, reqk2, . . . , reqkm} represents the array
that determines the requirements issued by ak for all
the m resources (required only if fa = add);

- durk represents the duration of ak (required only if
fa = add);

- [estk, letk] represents the time interval in which ak

might be inserted (required only if fa = add), where
estk and letk are, respectively, the admissible early
start time and the latest end time for ak;

• the event ecausal, characterizing the insertion/removal of
a causal constraint between two activities, is defined as:

modC(t) = 〈fc, aprev, asucc, dmin, dmax, taware〉 (5)

where:
- fc ∈ add, remove is a flag that describes whether the

event is aimed at adding or removing the constraint
existing between the activities identified by aprev and
asucc to/from the set C;

- dmin and dmax represent, respectively, the minimum
and maximum distance that the constraint must impose
between aprev and asucc (required only if fc = add).

The reader should notice that the edelay , edur and ecausal

events represent a specialization of the modifier modC(t);
the eres event is a specialization of the modifier modR(t),
while the event eact specializes the modifier modV(t).

The Generation of Exogenous Events
This section describes the general framework we devised
for benchmark data sets generation. We have already men-
tioned that different benchmark generators for the static sub-
problem have been deeply studied in literature (Demeule-
meester, Dobin, & Herroelen 1993; Kolish, Sprecher, &
Drexl 1995; Schwindt 1998); these efforts have resulted
in the production of formally defined scheduling prob-
lem instances characterized by various levels of difficulty.
The benchmark generator we propose will be based on
the scheduling problem instances defined with these ap-
proaches.

Figure 2 depicts the elements of an empirical framework
for schedule execution, showing how the benchmark gener-
ator for the reactive scheduling problem is strictly decou-
pled from the scheduling problem solutions. The frame-
work is composed of the following modules: (1) a Predic-
tive Scheduler, which is in charge of solving the static sub-
problem by synthesizing the baseline schedule; (2) the Reac-
tive Scheduler, which receives in input the baseline schedule
and solves the dynamic sub-problem by taking care of the
solution maintenance during the execution; (3) the Testset
Generator module, which produces the reactive scheduling
benchmark sets.

Within the depicted framework, each benchmark set is
treated as a second input to the Reactive Scheduler, which
is called to acknowledge the events and revise the executing
schedule according to the updated conditions. Note that, as
Figure 2 shows, the PSP instances are a necessary input for
Testset Generator, as the knowledge of the structure of each
base scheduling problem instance P is necessary to synthe-
size exogenous events meaningfully related to P . Besides,
this is in perfect accordance with Definition 2 of Instant



Figure 2: Reactive Scheduling Framework

Modifier, presented as an operator that applies to a problem
instance P in order to alter some of its original properties.

In the next sections we focus on some important issues en-
countered during the process of tailoring the production of
the benchmark sets to instances of our reference scheduling
problem, the RCPSP/max (Bartusch, Mohring, & Raderma-
cher 1988).

Timing the Exogenous Events consistently
A RSP benchmark generator is supposed to produce event
instances whose characteristics (type, extent, etc.) are com-
puted pseudo-randomly, to the aim of synthesizing bench-
marks of a given difficulty. In the particular case of re-
active scheduling, every benchmark instance IRS must be
generated relatively to one base scheduling problem instance
IS ; the analysis of IS is necessary to determine the bounds
within which the randomization must operate in order to pro-
duce meaningful disturbances.

Given a baseline solution SP of a scheduling problem P ,
the production of a set of disturbing events, each character-
ized by values of the taware parameter which are consistent
for all possible executions of P ’s solutions, is not trivial for
the following reasons: (1) the solution of a scheduling prob-
lem is in general not unique, and (2) the start times of the
schedule activities may decrease during execution because
of task anticipations. Since it is not possible to know in
advance all possible decisions taken by every rescheduler
during the revision process, the new solution might in gen-
eral present an allocation of the activities that does not allow
a consistent introduction of the subsequent event present in
the benchmark set.

In order to overcome this difficulty and therefore produce
events characterized by taware values that are guaranteed to
be valid for every possible execution, (a) we use a relaxed
version of the scheduling problem in which we strictly fo-
cus on the temporal aspects of the problem (i.e. disregarding
all the resource constraints), and (b) we introduce a number
of conditions which guarantee that whatever the executional
conditions and the time of occurrence, each produced event
will exhibit a positive computation time window. This re-
laxed problem consists in a Simple Temporal Problem, or
STP. An STP can be represented by simple temporal net-
work (STN) and solved as a constraint satisfaction problem
in which every constraint is binary and a consistent solution
is obtained, after a complete propagation, picking the lower
admissible value for each activity – Earliest Start Time solu-
tion (Dechter, Meiri, & Pearl 1991).

Figure 3 shows a scheduling problem composed of
five activities and its associated simple temporal network.
Depending on the network structure and on the values per-

Figure 3: Simple Temporal Network underlying a Schedul-
ing Problem

taining to the network constraints, every time point tpi is as-
sociated to an interval [lbi, ubi] of admissible values for tpi.
The width ubi− lbi of each interval is inversely proportional
to the “constrainedness” of the associated time point; in a
network characterized by a temporal horizon H , every time
point tpi can be associated to an interval whose largest width
is H (ubi = H , lbi = 0), corresponding to the lowest level
of time point constrainedness. Obviously, the highest level
of time point constrainedness is reached when ubi = lbi, in
which case only one feasible value exists for tpi.

A determined level of constrainedness2 cstr can therefore
be computed for any given STN, as follows:

cstr =
nH∑n

i=1(ubi − lbi)
(6)

where n is the number of time points and H is the tempo-
ral horizon. Given a scheduling problem P and its related
temporal network TNP characterized by a constrainedness
cstr, all the time points are therefore associated to a low-
est and a highest possible value, respectively represented by
the lower and the upper bound of their admissibility inter-
val; this basically means that whatever the chosen time point
tpi ∈ [lbi, ubi], all attempts to anticipate tpi before lbi or to
delay it after ui are destined to cause a temporal propagation
failure, unless some of the network constraints are retracted.

If constraints can only be added and no problem constraint
relaxations are ever allowed as new solutions are found dur-
ing the execution, the constrainedness of the temporal net-
work is bound to constantly increase (see Figure 4), and so
are the lower bounds of all the admissibility intervals asso-
ciated to every time point. At the activity symbolic level,
this circumstance directly entails that an activity’s start time
can only be shifted rightwards with respect to the original
position, therefore widening the computation time windows
of all the exogenous events synthesized for that activity and
keeping valid the taware values assigned to such events at all
times.

Yet, certain types of exogenous events, like activity an-
ticipations or processing time reductions, might still model
situations that necessarily entail constraint retractions. At
the present stage of our work, we therefore decided to work
around a set of simplifying assumptions to be applied at
benchmark generation time that, if verified, guarantee the

2Note that cstr ∈ [1,∞); if necessary, the reciprocal looseness
(lsns) metric can be used, with lsns = 1

cstr
∈ [0, 1].



Figure 4: Constrainedness increasing with the occurrence of
exogenous events

monotonic increase condition as shown in Figure 4, for the
constrainedness of the temporal network associated to the
scheduling problem instance P . Such assumptions do not
represent “dogmatic” restrictions, they rather represent a
necessary starting point in the analysis of reactive schedul-
ing benchmarks. Current research is ongoing in order to
provide for their possible relaxation; moreover, it should
be noted that they are not too restrictive: the range of reac-
tive scheduling problems that can be formulated, even in the
presence of these assumptions, covers many practical and
not trivial situations.

More specifically, we currently consider events that do not
entail:
• activity anticipations:

∆st > 0, ∀edelay = 〈ai,∆st, taware〉 (7)

• reductions of activity durations:

∆dur > 0, ∀edur = 〈ai, ∆dur, taware〉 (8)

• activity removals:

fa = add, ∀eact = 〈fa, ak, reqk, durk, estk, letk, taware〉
(9)

• causal constraint removals:

fc = add, ∀ecausal = 〈fc, aprev, asucc, dmin, dmax, taware〉
(10)

The previous assumptions facilitate the computation of
precise temporal bounds, based on the temporal network un-
derlying the original problem P . Under the monotonic in-
crease condition, such bounds easily allow to define “safe”
values for the taware parameter, each related to a different
event type.

More precisely, let us suppose to have a scheduling
problem P composed of a set of n activities V =
{a1, a2, . . . , an} where every ai is characterized by a start
time sti ∈ [lb(sti), ub(sti)] and an end time eti ∈
[lb(eti), ub(eti)]. For each event type, we can compute the
following bounds:
- [edelay] In the case of delay of an activity ai, we assume

that:
taware ≤ lb(sti) (11)

- [edur] In the case of change of ai’s processing time pi,
we assume that:

taware ≤ lb(eti) (12)

- [eact] In the case of insertion of an activity ak, we as-
sume that:

taware ≤ estk (13)

- [ecausal] In the case of insertion of a new constraint3
between the two activities aprev and asucc, we assume
that:

taware ≤ min[lb(etprev), lb(stsucc)] (14)

Quantifying the Benchmark Instances Consistently
The main reason that motivated the analysis of the events
timings is feasibility; but consistent timing is just one as-
pect of event feasibility. The previous results, based on the
temporal network underlying the scheduling problem, reveal
extremely useful to the aim of establishing precise limits
within which to perform randomization in the generation
process of the reactive scheduling benchmark sets. Since
the benchmark generation process is based on an aprioristic
analysis of the initial temporal network, the knowledge of
the temporal bounds that affect every time point is essential
to produce events of meaningful size, i.e., events that do not
uselessly overstress the network structural properties.

More precisely, the bounds that can be extracted from the
scheduling problem are the following:
- [edelay] For the width of the delay of an activity ai:

0 < ∆st ≤ ub(sti)− lb(sti) (15)

- [edur] For the change of ai’s processing time pi:

0 < ∆dur ≤ ub(eti)− lb(sti)− pi (16)

- [eres] For the change of resource rk’s maximum capac-
ity:

0 ≤ ∆cap ≤ Cmax
k (17)

The previous statements fix, for each event type of inter-
est, the rigid bounds within which the size of the events must
be randomly generated. For example, in the case of a de-
lay of the activity ai, the benchmark generator will produce
an edelay event whose ∆st size takes a randomly generated
value between 1 and ub(sti)−lb(sti), as this quantity clearly
represents the maximum allowed distance between sti and
eti allowed by the temporal network.

Yet, choosing the event size between the previous bounds
represents a necessary but not sufficient condition to guar-
antee event feasibility, for the following reason: given a
scheduling problem P and a baseline solution SP , they are
generally characterized by two different temporal networks
(TNP and TNS) both exhibiting different degrees of con-
strainedness (cstr = C0 and cstr = Cs respectively, with
C0 ≤ Cs); moreover, during the execution of the sched-
ule, either the exogenous events and the consequent re-
scheduling processes tend to constantly increase the con-
strainedness of the current solution’s temporal network ac-
cording to the schema shown in Figure 4. Since the bounds

3A causal link between two activities ai and aj is intended as a
temporal constraint between etai and staj .



defined by the equations 15, 16 and 17, are based on the
analysis of P ’s network, which is characterized by the low-
est cstr = C0 value, the events whose size is computed on
the basis of such cstr value cannot be guaranteed to model
a consistent situation, as the network’s constrainedness in-
creases. In other words, the total dynamic acceptance of
all the produced benchmark instances cannot be guaranteed:
yet, a wise management of temporal constrainedness can be
profitably used to control the benchmark difficulty, as shown
in the next section.

Setting the Difficulty of the Benchmark Instances
In order to design a complete testset generator, it is essential
to introduce a set of metrics to the aim of controlling the dif-
ficulty related to each generated event. The need to assess
the impact factor of an event on the execution of a schedule
raises from the fact that in general, the same event may have
enormous consequences on one specific schedule and little
or no consequence at all on another solution; for this reason,
it is not possible to detach the reactive scheduling bench-
mark set from the scheduling problem instance it is intended
to be applied to.

Depending on the particular executional aspect we are in-
terested at, several metrics µ() can be used to synthesize
events of determined size, that aim at interfering with that
aspect by introducing specific changes of controllable grav-
ity. Once these metrics are identified, they can therefore
be used to bias the generation of the benchmark instances,
in order to produce events characterized by different diffi-
culty levels, with respect to the specific scheduling prob-
lem. The idea is to use the metric µ() to evaluate the struc-
ture of the scheduling problem as a set of unexpected events
E = {e1, . . . , en} are systematically introduced during its
execution.

For instance, let us consider a scheduling problem P k ob-
tained by introducing the event ek during the execution of
the original problem P 0; apart from the particular aspect
measured by the chosen metric µ(), it is possible to compare
the structural properties of the problems P k and P 0, and
therefore assess the event difficulty, in the following ways:
- by measuring the absolute variation with respect to the

previous problem:

∆µ = |µ(P k)− µ(P 0)| (18)

- by measuring the speed of this variation:

∆µ

∆t
=
|µ(P k+1)− µ(P k)|

∆t
(19)

where ∆t represents the temporal distance between ek+1

and ek.
It is worth remarking that for the second aspect is fun-

damental how the events are spaced over the horizon: given
two events, the closer they are, the more critical the situation
will be. This corroborates the necessity to define taware val-
ues which are solution independent: In the following para-
graphs we describe the metrics currently used to evaluate the
benchmark instances. In particular, these metrics directly re-
flect the two main aspects that permeate the scheduling prob-
lem, namely, the aspects related to the temporal constraints
and to the resource constraints.

Temporal metrics. Each of the temporal metrics we de-
scribe represents a particular interpretation, at the activity
symbolic level, of the general metric previously defined as
constrainedness. The different metrics will be used depend-
ing on the particular temporal aspect of interest.

The first metric we focus on, quantifies the effects of the
precedence constraints added in the plan of the tasks. To
do this we start considering the notion of Order Strength
described in (Mastor 1970):

OSP =
|P |

n(n− 1)/2
(20)

where n is the number of the activities in P , and P denotes
the set of precedence relations in the transitive closure of
the precedence graph associated to P . In other terms, |P |
denotes the number of activity pairs that are related. Thus,
the lower the value of |P |, the more flexible the problem.

It is worth noting that the OSP metric only gives a qual-
itative evaluation of the solution’s constrainedness in terms
of constraint structure. In a problem like the RCPSP/max it
is often necessary to integrate this analysis with another met-
ric, able to assess also the quantitative aspects of the current
solution. A possible metric that satisfies this requirement
is the fluidity fldt (Cesta, Oddi, & Smith 1998). It requires
the presence of a fixed-time horizon for the termination of all
the activities. In order to compare two or more solutions, we
bind a single partial order schedule to have a finite number
of solutions; then the metric is defined as the average width,
relative to a given temporal horizon H , of the temporal slack
associated with each pair of activities (ai, aj):

fldtH =
n∑

i=1

n∑

j=1∧j 6=i

slack(ai, aj)
H × n× (n− 1)

× 100 (21)

where slack(ai, aj) is the width of the allowed distance in-
terval between the end time of activity ai and the start time
of activity aj . This metric characterizes the fluidity of a so-
lution, which can be interpreted as the potential to use the
network’s available looseness to absorb temporal variations
during the execution of the activities.

Similarly, if the aspect we are interested at is solution sta-
bility, q suitable metric is the disruptibility dsrp (Policella
et al. 2004):

dsrp =
1
n

n∑

i=1

slackai

numchanges(ai, slackai)
(22)

where numchanges(ai, slackai) computes the number of ac-
tivities whose temporal position changes consequently to a
delay of size slackai imposed on activity ai.

The greater the difference ∆µ caused by the insertion on
the event, the greater the problem’s loss of stability, the more
difficult the problem faced by the re-scheduler to find an ad-
justment that minimizes such loss.

Resource metrics. In order to understand the bias pro-
duced by a set of events on the resource-related character-
istics of the scheduling problems, we employ another well-
known measure, namely the Resource Strength ((Schwindt



1998)), defined as follows:

RSk =
Cmax

k − rk
min

rk
max − rk

min

(23)

In which, given the resource rk, we recognize the follow-
ing elements:

- rk
min = maxi=1..n reqik, as the maximum usage of re-

source rk by any activity;

- rk
max, as the peak demand of resource rk computed on the

early start time solution of the infinite capacity version of
the problem4.
For each resource rk, this measure takes into account the

resource availability level with respect to the task require-
ments. The metric µ() we are interested at, is based on the
average value of RSk over all the resources employed in the
scheduling problem P :

RSP =
∑m

k=1 RSk

m
(24)

As opposed to the Order Strength OSP , the higher RSk

is, the less constrained is the problem. Again, using the met-
ric RSP we can generate events that globally aim at reduc-
ing the “safety margin” between the resource maximum ca-
pacities and the average resource utilization, thus increasing
the probability (if not directly causing the development) of
contention peaks.

Conclusions
The present work aimed at analyzing the production of
benchmark data sets for the scheduling execution problem.
This effort is justified by the absence of such benchmarks
in the scheduling literature, and by our conviction that they
represent a necessary means to foster: (a) significant experi-
mental analysis and (b) scheduling competitions, in the reac-
tive scheduling problem area. The devised benchmarks ba-
sicly consist of a set of properly synthesized schedule mod-
ifications (exogenous events), aimed at simulating the envi-
ronmental uncertainty; during the execution of the schedule,
the events are iteratively introduced, in order to spoil some
of the initial schedule’s characteristics in a determined and
measurable fashion.

To this aim, it is therefore essential to provide a precise
definition of all the metrics of interest, in order to quali-
tatively and quantitatively assess the changes that a sched-
ule may undergo during the execution in such unpredictable
conditions (measuring the difficulty of each particular set of
events). This analysis is performed on the basis of the ini-
tial scheduling problem structure, as the impact factor of
a disturbance is a function of the particular schedule the
same disturbance is applied to. The effectiveness of a re-
scheduling action will be obviously measured with respect
to the gravity of the occurred modification.

In order to minimize the possibility of event rejection and
guarantee an acceptable level of feasibility, the event’s tim-
ing and size must be carefully determined during the bench-
mark production process, through a deep analysis of the

4The infinite capacity version of a scheduling problem P is ob-
tained by relaxing all the resource constraints in P .

scheduling problem. The assessment of consistent event
timings and sizes is essential to avoid the production of use-
less benchmark instances, such as events that are related to
activities that have already terminated, or events that stress
the problem structure beyond its physical limits. Such anal-
ysis results in the introduction of a set of preliminary restric-
tions on the possible event types that can be generated: the
elimination and/or softening of these conditions in the object
of currrently ongoing research.

Once the reactive scheduling problem is operationally de-
fined and the previous benchmark instances are produced,
the way is paved for the next step, consisting in the intro-
duction of a general schedule execution framework, where
different proactive and reactive scheduling techniques can
be put to the test against different reproducible reactive
scheduling problem instances of measurable difficulty.
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