
The Challenge of Sequence-Dependent Setups: Proposal for a Scheduling
Competition Track on One Machine Sequencing Problems

Vincent A. Cicirello
Computer Science and Information Systems
The Richard Stockton College of New Jersey

Pomona, NJ 08240
cicirelv@stockton.edu

Abstract

Designing a scheduling competition to attract researchers
from the several fields interested in scheduling problems
seems a challenging, and highly worthwhile effort. In this
paper, we propose a design for one possible track of this
proposed scheduling competition. Specifically, we propose
a track aimed at one machine sequencing problems. We ar-
gue that any such track must include problems with sequence-
dependent setups. Our proposed single machine sequenc-
ing track would additionally include a spectrum of objec-
tive functions of increasing optimization difficulty under
sequence-dependent setups. We also offer a problem instance
generator along with a set of benchmark problem instances
for one potential competition problem—the weighted tardi-
ness scheduling problem with sequence-dependent setups.

Introduction
Designing a scheduling competition to attract researchers
with interests in a broad set of problem solving approaches
seems a challenging, and highly worthwhile effort. It seems
an important next step in a series of recent events related
to bringing scheduling researchers from different fields such
as AI and OR together. For example, in August of 2007
the third installment of a new conference series, the Mul-
tidisciplinary International Scheduling Conference: Theory
and Applications (MISTA) (MISTA 2003 2007), takes place.
MISTA’s aim since its inception in 2003 is to bring together
researchers from the numerous fields interested in schedul-
ing. Or for example, in the UK, there is the relatively re-
cently formed Inter-disciplinary Scheduling Network (Uni-
versity of Nottingham 2007) supported by the UK’s Engi-
neering and Physical Sciences Research Council (EPSRC),
which is a network of researchers from academia and indus-
try as well as industrial practitioners engaged in scheduling
related research and development. There have been reason-
able success at bringing AI and OR researchers together in
the past in the field of constraint programming such as the
International Conference on Integration of AI and OR Tech-
niques in Constraint Programming (CP-AI-OR) which grew
from workshop size from 1999 to 2003 into an annual con-
ference beginning in 2004 (CP-AI-OR 1999 2006).

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Likewise, there have also been recent events aimed at
bringing AI scheduling researchers together with those in
the field of AI planning, such as the AAAI 2005 Workshop
on Integrating Planning into Scheduling (AAAI 2005). Per-
haps a more prominent example of emphasizing the impor-
tance of bringing AI planning and scheduling researchers
together was when the predecessor of ICAPS changed its
name from the International Conference on AI Planning
Systems (AIPS) to the International Conference on AI Plan-
ning and Scheduling in 2000, retaining the AIPS acronym
but increasing emphasis on the interaction of planning and
scheduling (AIPS 2000 2002). Additionally, the AIPS 2000
conference included for the first (and only) time a schedul-
ing competition (AIPS 2000). As we begin to formulate a
scheduling competition as an interdisciplinary community,
we should perhaps look back to see why this past attempt
was a one-time thing. This paper does not attempt to answer
that question.

Any successful scheduling competition must acknowl-
edge that there is a great diversity not just in the type of ap-
proaches taken to solving scheduling problems, but also in
the nature of those problems. One possible organization of a
competition would be to include multiple tracks aimed at the
different categories of scheduling problem. In this paper, we
propose a design for such a track for a scheduling competi-
tion. Specifically, we propose a track aimed at one machine
sequencing problems. We argue that any such track must
include problems with sequence-dependent setups. Our pro-
posed single machine sequencing track would additionally
include a spectrum of objective functions of increasing op-
timization difficulty under sequence-dependent setups. We
also offer a problem instance generator along with a set of
benchmark problem instances for one potential competition
problem—the weighted tardiness scheduling problem with
sequence-dependent setups.

Why Sequence-Dependent Setups
Setup time refers to a length of time that must be spent
preparing a machine prior to processing a job (Morton &
Pentico 1993). If all jobs are identical, or if the setup time
only depends on the job that the machine is being setup
for, but not on the previously processed job, then we can
say that the setups are sequence-independent. If the setups
are sequence-independent, then the problem can be trans-



formed to essentially remove them from the problem (e.g.,
adding the setup times to the process times). When the setup
time of a job depends on the job that is processed immedi-
ately before it on the machine than the setups are sequence-
dependent. Allahverdi et al as well as Zhu and Wilhelm of-
fer comprehensive reviews of these and other considerations
pertaining to setup costs (Allahverdi, Guptab, & Aldowaisan
1999; Zhu & Wilhelm 2006).

Sequence-dependent setups commonly appear in real-
world scheduling problems (e.g., (Adler et al. 1993; Chiang,
Fox, & Ow 1990; Morley & Schelberg 1993; Morley 1996)).
Unfortunately, however, they are often ignored during the
development of algorithms. The vast majority of work
on sequencing problems assume that setups are sequence-
independent, usually without acknowledging the possibility
that they may be a factor in the problem. For example, a
recent search of scholar.google.com produced 4190 docu-
ments that include both the words sequence-dependent and
scheduling; whereas scholar.google.com finds 1,160,000
documents with the term scheduling. That is, less than a half
percent (0.36%) of the scheduling articles, books, etc in-
dexed by scholar.google.com consider sequence-dependent
setups.1 Using Google to search the Citeseer repository pro-
duced 383 out of 75,700 scheduling articles that consider
sequence-dependent setups (approximately 0.5%). Further-
more, if you relax the search to the terms scheduling and
setup, a mere 1.77% of the scheduling articles indexed by
scholar.google.com, and less than one percent (0.9%) of the
scheduling documents in Citeseer, even mention setup times.

Sen and Bagchi discuss the significance of the challenge
that sequence-dependent setups pose for exact solution pro-
cedures (Sen & Bagchi 1996). Specifically, they discuss how
sequence-dependent setups induce a non-order-preserving
property of the search problem’s evaluation function. At the
time of their writing, exact solution procedures such as A*,
Branch-and-Bound algorithms, or GREC (Sen & Bagchi
1996) for sequencing problems with sequence-dependent se-
tups were limited to solving instances with no more than
approximately 25-30 jobs. Problem instances of larger size
require turning to approximate or heuristic algorithms.

Objective Functions
Consider single machine sequencing problems with the fol-
lowing characteristics. Specifically, we are given a set of
jobs J = {j0, j1, . . . , jN}. Each of the jobs j has a weight
wj , duedate dj , and process time pj . Furthermore, si,j is
defined as the amount of setup time required immediately
prior to the start of processing job j if it follows job i on
the machine. It is not necessarily the case that si,j = sj,i.
The 0-th job is the start of the problem (p0 = 0, d0 = 0,
si,0 = 0, w0 = 0). Its purpose is for the specification of
the setup time of each of the jobs if sequenced first. The
sequence-dependent nature of the setup times is a primary
source of problem difficulty.

We now list a series of possible objective functions that
could be employed within a single machine sequencing track

1Search executed on June 13, 2007. No attempt has been made
to remove duplicated documents from the search results.

of the proposed scheduling competition. They are listed in
order of what is believed to be increasing level of difficulty.
The proposed competition track could require entered sched-
ulers to be capable of optimizing any of the following objec-
tive functions, where the objective function would be sup-
plied to the scheduler during the execution of the competi-
tion along with the instance. The performance of the sched-
ulers in the competition track would be evaluated on each of
the objective functions. Runners-up would include the best
performing schedulers for each of the objective functions,
but the ultimate winner of the track would be the best all
around single machine scheduler.

In the following objective functions, the completion time
cj of a job j is equal to the sum of the process times and
setup times of all jobs that come before it in the sequence
plus the setup time and process time of the job itself. Specifi-
cally, let π(j) be the position in the sequence of job j. Define
cj as:

cj =
∑

i,k∈J,π(i)<=π(j),π(i)=π(k)+1

pi + sk,i. (1)

Objective Function 1: Makespan. The makespan objec-
tive is to sequence the set of jobs J on the machine to mini-
mize:

Cmax = max
j∈J

cj . (2)

When setups are independent of sequence, this can be triv-
ially computed for a one machine problem without temporal
constraints (i.e., simply add the process times). However, for
the sequence-dependent setup problem, this is equivalent to
the wandering salesperson problem which is very closely re-
lated to the traveling salesperson problem both of which are
NP-Hard (Papadimitriou & Steiglitz 1998).

Objective Function 2: Weighted Lateness. The
weighted lateness objective is to sequence the set of jobs J
on a machine to minimize:

L =
∑

j∈J

wjLj =
∑

j∈J

wj(cj − dj), (3)

where Lj is the lateness of job j. More often, weighted
lateness is expressed as weighted completion times with:

L =
∑

j∈J

wjcj , (4)

since the schedule that optimizes weighted completion times
also optimizes weighted lateness. The duedates in the
weighted lateness function are superfluous.

Sen and Bagchi specified 7 general classes of schedul-
ing objective in increasing order of difficulty (Sen & Bagchi
1996). The first 3 classes pertained only to problems with
sequence-independent setups. The next 4 categories per-
tained to problems with sequence-dependent setups. The
first of the latter set (category D) is if the optimization ob-
jective is a linear function of the job completion times. The
weighted lateness objective is a clear example of this type of
objective function. It is also an objective function that has



received little, if any, attention within the scope of a prob-
lem with sequence-dependent setups. For example, only 3
articles are return from a search of scholar.google.com that
discuss both sequence-dependent setups and the weighted
lateness objective. In all 3 cases, the articles are actually
considering the weighted tardiness objective (discussed be-
low) under sequence-dependent setups; and weighted late-
ness is simply mentioned as a related objective function. It
is proposed here as an “easier” problem level for the compe-
tition, although under sequence-dependent setups it is cer-
tainly not an easy problem and is in fact NP-Hard. If setups
are independent of sequence, this objective function can be
very easily optimized (Morton & Pentico 1993).

Objective Function 3: Weighted Tardiness. The next
proposed objective function for this track of the scheduling
competition is that of weighted tardiness. The weighted tar-
diness objective is to sequence the set of jobs J on a machine
to minimize:

T =
∑

j∈J

wjTj =
∑

j∈J

wj max (cj − dj , 0), (5)

where Tj is the tardiness of job j.
The weighted tardiness objective is encountered in a num-

ber of real-world applications, including turbine component
manufacturing (Chiang, Fox, & Ow 1990), the packaging
industry (Adler et al. 1993), among others (Morton & Pen-
tico 1993). It is a scheduling objective function that Mor-
ton and Pentico indicate to be very hard even if setups are
independent of job sequence (Morton & Pentico 1993)—
this “easier” case is actually NP-Hard (Garey & Johnson
1979). Within the categorization of Sen and Bagchi, it is
unclear just where weighted tardiness fits. They do not dis-
cuss how things like the max function effect their catego-
rization scheme. It is not really a linear function of the job
completion times, although it is piecewise linear. Therefore,
it would seem to belong in the hardest of Sen and Bagchi’s
categories (category G: more complex functions of the job
completion times) (Sen & Bagchi 1996). Exact optimal so-
lutions can be found by branch-and-bound for instances of at
most 40-50 jobs (e.g., (Potts & van Wassenhove 1985)), but
are considered impractical for instances that are larger than
this (Narayan, Morton, & Ramnath 1994). For larger in-
stances, heuristic or metaheuristic approaches are preferred
(e.g., (Congram, Potts, & van de Velde 2002; Narayan,
Morton, & Ramnath 1994; Potts & Van Wassenhove 1991;
Crauwels, Potts, & Van Wassenhove 1998)).

Although there are exact approaches for optimizing this
objective function when setups are independent of sequence
(or non-existent), all current approaches for the problem
when setups are sequence-dependent are either heuristic
or metaheuristic. For example, there are some dispatch
scheduling heuristics for the sequence-dependent setup ver-
sion of the weighted tardiness problem such as ATCS (Lee,
Bhaskaran, & Pinedo 1997) as well as the heuristic of (Ra-
man, Rachamadugu, & Talbot 1989). Both of these are
rather ad hoc modifications of the well-known R&M dis-
patch policy (Rachamadugu & Morton 1982) for the setup-
free version of the problem. Additionally, there have been

several recent metaheuristics for the problem. Lee et al,
in addition to specifying the ATCS heuristic, suggested a
local hill climbing algorithm to apply to the dispatch solu-
tion (Lee, Bhaskaran, & Pinedo 1997). Cicirello and Smith
developed a value-biased stochastic sampling algorithm to
expand the search around ATCS; and also benchmarked their
approach with several other heuristic search algorithms (Ci-
cirello & Smith 2005). Most recently, a permutation-based
genetic algorithm using the Non-Wrapping Order Crossover
operator (Cicirello 2006) and a simulated annealing algo-
rithm (Cicirello 2007) have both improved upon a number
of the best known solutions to several benchmark instances.

Objective Function 4: Weighted Squared Tardiness.
The weighted squared tardiness objective is to sequence the
set of jobs J on a machine to minimize:

T 2 =
∑

j∈J

wjT
2
j =

∑

j∈J

wj max (cj − dj , 0)
2
. (6)

There has been limited research into scheduling with
sequence-dependent setups to optimize the weighted
squared tardiness objective (e.g., (Sun, Noble, & Klein
1999)). In Sen and Bagchi’s categorization, the weighted
squared tardiness objective would seem at first to belong
in category E which includes objectives that are quadratic
functions in the completion times of the jobs (Sen & Bagchi
1996). But as with the weighted tardiness objective, the max
function inside the sum seems to increase the difficulty in
optimizing this objective beyond what it would be without
the max. In any event, this is likely a more difficult objec-
tive function to optimize under sequence-dependent setup
constraints.

Weighted Tardiness Problem Instance
Generator

During his PhD dissertation research, the author imple-
mented a problem instance generator for the weighted tar-
diness scheduling problem with sequence-dependent se-
tups (Cicirello 2003). This instance generator is an im-
plementation of a procedure described by Lee et al and
used in the analysis of Lee et al’s dispatch scheduling
policy ATCS (Lee, Bhaskaran, & Pinedo 1997). Ci-
cirello’s instance generator has since been refined and
reimplemented in Java and is available on the web
(http://loki.stockton.edu/˜cicirelv/benchmarks/). Although
implemented to generate problem instances for the weighted
tardiness objective, it can also be used without modification
to generate instances for the other objectives.

Each problem instance is characterized by three parame-
ters: the due-date tightness factor τ ; the due-date range fac-
tor R; and the setup time severity factor η. These parameters
are defined as follows:

τ = 1 −
d̄

C̃max

(7)

R =
dmax − dmin

C̃max

(8)

η =
s̄

p̄
(9)



where d̄, p̄, and s̄ are the average duedate, average pro-
cess time, and average setup time, dmax, dmin are the max-
imum and minimum duedates, and C̃max is an estimation
of the makespan Cmax (or completion time of the last job).
Computing the actual makespan for the instance is NP-
Hard, thus the estimator suggested by Lee et al is used:
C̃max = n(p̄ + βs̄) where n is the number of jobs in the
problem instance. This estimator for the makespan amounts
to a sum of the process times of the jobs which is the same
regardless of sequence, and an estimate of the sum of the
setup times.

Lee et al provide experimental data for setting the value
of β for 4 different size problems (20, 40, 60, and 80 job in-
stances). Cicirello’s original implementation of the instance
generator was restricted to generating instances of those 4
sizes. One of the refinements of the new Java implementa-
tion is fitting a curve to Lee et al’s reported data to extrapo-
late appropriate values of β for other size problem instances.
Specifically, a small 3 node feedforward neural net (2 hidden
sigmoid nodes, 1 output sigmoid) with the number of jobs,
N , as input was fitted to the data to minimize sum of squared
errors (0.000825). The result is the following definition of β
as a function of the number of jobs:

β(N) =
1

1 + e(1.0949132−1971.6253·A(N)−8.1243637·B(N))
,

(10)
with

A(N) =
1

1 + e(7.168150953+0.040112027·N)
(11)

and

B(N) =
1

1 + e(−10.58867025+2.400027877·N)
. (12)

The processing times of the jobs of the instances produced
by the generator are uniformly distributed over the interval
[50, 150], with p̄ = 100. The mean setup time s̄ is then
determined from η and the setup times are uniformly dis-
tributed in the interval [0, 2s̄]. The duedate of a job is uni-
formly distributed over [d̄(1 − R), d̄] with probability τ and
uniformly distributed over [d̄, d̄+(Cmax− d̄)R] with proba-
bility 1−τ . The weights of the jobs are distributed uniformly
over [0, 10].

Weighted Tardiness Benchmark Instances
In addition to the instance generator, the set of bench-
mark problem instances used by (Cicirello 2003;
Cicirello & Smith 2005; Cicirello 2006;
2007) among others, are available on the web
(http://loki.stockton.edu/˜cicirelv/benchmarks/). This
benchmark set includes 120 problem instances with 60 jobs
each. The problem set is characterized by the following
parameter values: τ = {0.3, 0.6, 0.9}; R = {0.25, 0.75};
and η = {0.25, 0.75}. For each of the twelve combinations
of parameter values, there are 10 problem instances. Gener-
ally speaking, these 12 problem sets cover a spectrum from
loosely to tightly constrained problem instances.

Table 1: Current best known solutions for instances with:
Loose Duedates, Narrow Duedate Range, Mild Setups

Instance Best First Found By
1 790 SA-H
2 5824 SA-H
3 1936 GA
4 6840 SA-H
5 5017 SA-R
6 7824 SA-H
7 3933 SA-H
8 298 SA-R
9 7059 SA-H
10 2125 SA-H

Table 2: Current best known solutions for instances with:
Loose Duedates, Narrow Duedate Range, Severe Setups

Instance Best First Found By
11 5088 SA-H
12 0 LDS
13 6147 VBSS-HC
14 3761 SA-R
15 2039 SA-R
16 5559 SA-R
17 387 SA-R
18 1918 SA-R
19 239 SA-H
20 3805 SA-R

File Format. Each benchmark instance is stored in a sep-
arate file according to the following file format:

Problem Instance: <instance number>
Problem Size: <number of jobs>
Begin Generator Parameters
Tau: <tau>
R: <R>
Eta: <eta>
P_bar: <average process time>
P_MIN: <minimum process time>
P_MAX: <maximum process time>
S_bar: <average setup time>
MAX_WEIGHT: <maximum weight value>
C_max: <makespan estimate>
D_bar: <average duedate>
End Generator Parameters
Begin Problem Specification
Process Times:
<process time for job 0>
...
<process time for job n-1>
Weights:
<weight for job 0>
...
<weight for job n-1>
Duedates:



Table 3: Current best known solutions for instances with:
Loose Duedates, Wide Duedate Range, Mild Setups

Instance Best First Found By
21 0 LDS
22 0 LDS
23 0 LDS
24 1092 SA-H
25 0 SA
26 0 LDS
27 57 SA-R
28 0 GA
29 0 LDS
30 215 SA-R

Table 4: Current best known solutions for instances with:
Loose Duedates, Wide Duedate Range, Severe Setups

Instance Best First Found By
31 0 LDS
32 0 LDS
33 0 LDS
34 0 LDS
35 0 LDS
36 0 LDS
37 1008 SA-R
38 0 LDS
39 0 LDS
40 0 LDS

<duedate for job 0>
...
<duedate for job n-1>
Setup Times:
<i> <j> <setup for job j if after i>
// i=-1 indicates setup if j is first
End Problem Specification

Current Best Known Solutions. Tables 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, and 12 list the current best known solutions
to the benchmark instances. Specifically, each table lists the
instance number, the current best known solution (for the
weighted tardiness objective), and the algorithm that first
found that solution. Note that other algorithms may also
have found that solution. We simply list here the first one
that did. Algorithms are abbreviated as follows:
• SA-H: A recent simulated annealing algorithm (Cicirello

2007).
• SA-R: A second version of that recent simulated anneal-

ing algorithm (Cicirello 2007).
• GA: A permutation-based genetic algorithm using the

Non-Wrapping Order Crossover operator and an insertion
mutator (Cicirello 2006).

• VBSS-HC: A multistart hill climber seeded with start-
ing configurations generated by Value Biased Stochastic

Table 5: Current best known solutions for instances with:
Moderate Duedates, Narrow Duedate Range, Mild Setups

Instance Best First Found By
41 71242 SA-H
42 59493 SA-H
43 147737 SA-H
44 36265 SA-H
45 59696 SA-R
46 36175 SA-R
47 74389 SA-H
48 65129 SA-R
49 79656 SA-R
50 32777 SA-R

Table 6: Current best known solutions for instances with:
Moderate Duedates, Narrow Duedate Range, Severe Setups

Instance Best First Found By
51 54707 SA-H
52 100793 SA-H
53 94394 SA-R
54 123558 VBSS
55 72420 SA-R
56 80258 SA-H
57 68535 SA-H
58 46978 SA-R
59 56181 SA-H
60 68395 SA-R

Sampling (Cicirello & Smith 2005).
• VBSS: Value Biased Stochastic Sampling (Cicirello &

Smith 2005).
• LDS: Limited Discrepancy Search truncated after ex-

hausting all search trajectories with 2 or less discrepan-
cies from the ATCS heuristic solution (Cicirello & Smith
2005). It was used in the original empirical evaluation of
VBSS and VBSS-HC.

• SA: A simulated annealing algorithm also used in
the original empirical evaluation of VBSS and VBSS-
HC (Cicirello & Smith 2005).
The problem instances and the best known solutions to

them are organized according to the 12 classes of instances
as follows:
• Table 1: Loose Duedates, Narrow Duedate Range, Mild

Setups
• Table 2: Loose Duedates, Narrow Duedate Range, Severe

Setups
• Table 3: Loose Duedates, Wide Duedate Range, Mild Se-

tups
• Table 4: Loose Duedates, Wide Duedate Range, Severe

Setups
• Table 5: Moderate Duedates, Narrow Duedate Range,

Mild Setups



Table 7: Current best known solutions for instances with:
Moderate Duedates, Wide Duedate Range, Mild Setups

Instance Best First Found By
61 76769 SA-R
62 44781 SA-H
63 76059 SA-H
64 93079 SA-H
65 127713 SA-R
66 59717 SA-H
67 29394 SA-R
68 22653 SA-R
69 71534 SA-H
70 76140 SA-R

Table 8: Current best known solutions for instances with:
Moderate Duedates, Wide Duedate Range, Severe Setups

Instance Best First Found By
71 155036 SA-R
72 49886 SA-H
73 30259 SA-H
74 32083 SA-R
75 21602 SA-R
76 57593 SA-H
77 35380 SA-H
78 21443 SA-H
79 121434 SA-H
80 20221 SA-H

• Table 6: Moderate Duedates, Narrow Duedate Range, Se-
vere Setups

• Table 7: Moderate Duedates, Wide Duedate Range, Mild
Setups

• Table 8: Moderate Duedates, Wide Duedate Range, Se-
vere Setups

• Table 9: Tight Duedates, Narrow Duedate Range, Mild
Setups

• Table 10: Tight Duedates, Narrow Duedate Range, Severe
Setups

• Table 11: Tight Duedates, Wide Duedate Range, Mild Se-
tups

• Table 12: Tight Duedates, Wide Duedate Range, Severe
Setups

In this set of benchmark instances, loose duedates, moderate
duedates, and tight duedates refer to values of the duedate
tightness factor τ of 0.3, 0.6, and 0.9, respectively. Narrow
duedate range and wide duedate range refer to values of the
duedate range factor of 0.25 and 0.75, respectively. Mild
setups and severe setups refer to values of the setup time
severity factor η of 0.25 and 0.75, respectively.

Table 9: Current best known solutions for instances with:
Tight Duedates, Narrow Duedate Range, Mild Setups

Instance Best First Found By
81 385918 SA-H
82 410550 SA-H
83 459939 SA-R
84 330186 SA-R
85 557831 SA-R
86 364474 SA-R
87 400264 SA-R
88 434176 SA-R
89 411810 SA-H
90 403623 SA-R

Table 10: Current best known solutions for instances with:
Tight Duedates, Narrow Duedate Range, Severe Setups

Instance Best First Found By
91 344428 SA-R
92 363388 SA-R
93 410462 VBSS
94 334180 SA-H
95 524463 SA-R
96 464403 LDS
97 418995 SA-H
98 532519 VBSS
99 374607 SA-R
100 441888 VBSS-HC

Conclusions
In this paper, the design of a scheduling competition
track focused on one machine sequencing problems was
proposed. We argued that any such track should in-
clude scheduling problems with sequence-dependent setups.
Sequence-dependent setups arise in a number of real-world
scheduling problems, but are often ignored in the design of
scheduling algorithms. Setups that are dependent upon the
ordering of the jobs lead to sequencing problems that are far
more difficult. For example, prior research shows that al-
gorithms guaranteed to find the exact optimal solutions are
largely limited to solving instances with no more than 25-30
jobs, at least for practical purposes, if setups are sequence-
dependent even for “easy” objective functions. Coupling
this with hard objective functions such as weighted tardi-
ness offer a worthy challenge problem for a competition. To
facilitate the design of this track further, the author has made
an existing set of benchmark instances, along with a problem
instance generator available on the web.

Acknowledgments
The preparation of this paper was supported by the Richard
Stockton College of New Jersey’s Research and Professional
Development Program. Thanks also go to the anonymous
reviewers who provided valuable input.



Table 11: Current best known solutions for instances with:
Tight Duedates, Wide Duedate Range, Mild Setups

Instance Best First Found By
101 353575 SA-R
102 495094 SA-H
103 380170 VBSS
104 358738 SA-R
105 450806 SA-R
106 457284 SA-H
107 353564 SA-H
108 462675 SA-R
109 413918 SA-H
110 419014 SA-R

Table 12: Current best known solutions for instances with:
Tight Duedates, Wide Duedate Range, Severe Setups

Instance Best First Found By
111 348796 SA-H
112 375952 SA-H
113 261795 SA-H
114 471422 SA-H
115 460225 VBSS
116 537593 SA-H
117 507188 SA-H
118 357575 LDS
119 581119 SA-H
120 399700 VBSS-HC

References
AAAI. 2005. AAAI 2005 workshop
on integrating planning into scheduling.
http://www.aaai.org/Library/Workshops/ws05-06.php.
Adler, L.; Fraiman, N. M.; Kobacker, E.; Pinedo, M.; Plot-
nitcoff, J. C.; and Wu, T. P. 1993. BPSS: a scheduling
system for the packaging industry. Operations Research
41:641–648.
AIPS. 2000–2002. The international conference
on AI planning and scheduling. http://www.icaps-
conference.org/.
AIPS. 2000. AIPS2000 scheduling competition.
http://www-aig.jpl.nasa.gov/public/aips00/AIPS-
SchedComp.html.
Allahverdi, A.; Guptab, J.; and Aldowaisan, T. 1999. A
review of scheduling research involving setup considera-
tions. Omega: International Journal of Management Sci-
ence 27:219–239.
Chiang, W. Y.; Fox, M. S.; and Ow, P. S. 1990. Factory
model and test data descriptions: OPIS experiments. Tech-
nical Report CMU-RI-TR-90-05, The Robotics Institute,
Carnegie Mellon University.
Cicirello, V. A., and Smith, S. F. 2005. Enhancing stochas-
tic search performance by value-biased randomization of
heuristics. Journal of Heuristics 11(1):5–34.

Cicirello, V. A. 2003. Boosting Stochastic Problem Solvers
Through Online Self-Analysis of Performance. Ph.D. Dis-
sertation, The Robotics Institute, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA. Also
available as technical report CMU-RI-TR-03-27.
Cicirello, V. A. 2006. Non-wrapping order crossover:
An order preserving crossover operator that respects ab-
solute position. In M. Keijzer et al., ed., Proceedings
of the Genetic and Evolutionary Computation Conference
(GECCO’06), volume 2, 1125–1131. ACM Press.
Cicirello, V. A. 2007. On the design of an adaptive simu-
lated annealing algorithm. Submitted for review to the CP
2007 Workshop on Autonomous Search.
Congram, R. K.; Potts, C. N.; and van de Velde, S. L. 2002.
An iterated dynasearch algorithm for the single-machine
total weighted tardiness scheduling problem. INFORMS
Journal on Computing 14(1):52–67.
CP-AI-OR. 1999–2006. International confer-
ence on integration of AI and OR techniques in
constraint programming (CP-AI-OR). http://www-
sop.inria.fr/coprin/cpaior04/.
Crauwels, H. A. J.; Potts, C. N.; and Van Wassenhove,
L. N. 1998. Local search heuristics for the single machine
total weighted tardiness scheduling problem. INFORMS
Journal on Computing 10(3):341–350.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Company.
Lee, Y. H.; Bhaskaran, K.; and Pinedo, M. 1997. A heuris-
tic to minimize the total weighted tardiness with sequence-
dependent setups. IIE Transactions 29:45–52.
MISTA. 2003–2007. Multidisciplinary international
scheduling conference: Theory and applications (MISTA).
http://www.mistaconference.org/.
Morley, D., and Schelberg, C. 1993. An analysis of a plant-
specific dynamic scheduler. In Proceedings of the NSF
Workshop on Intelligent, Dynamic Scheduling for Manu-
facturing Systems, 115–122.
Morley, D. 1996. Painting trucks at general motors: The ef-
fectiveness of a complexity-based approach. In Embracing
Complexity: Exploring the Application of Complex Adap-
tive Systems to Business, 53–58. The Ernst and Young Cen-
ter for Business Innovation.
Morton, T. E., and Pentico, D. W. 1993. Heuristic Schedul-
ing Systems: With Applications to Production Systems and
Project Management. John Wiley and Sons.
Narayan, V.; Morton, T.; and Ramnath, P. 1994. X-
Dispatch methods for weighted tardiness job shops. GSIA
Working Paper 1994-14, Carnegie Mellon University,
Pittsburgh, PA.
Papadimitriou, C. H., and Steiglitz, K. 1998. Combina-
torial Optimization: Algorithms and Complexity. Dover
Publications.
Potts, C. N., and van Wassenhove, L. N. 1985. A branch
and bound algorithm for the total weighted tardiness prob-
lem. Operations Research 33(2):363–377.



Potts, C. N., and Van Wassenhove, L. N. 1991. Single
machine tardiness sequencing heuristics. IIE Transactions
23(4):346–354.
Rachamadugu, R. V., and Morton, T. E. 1982. Myopic
heuristics for the single machine weighted tardiness prob-
lem. Working Paper 30-82-83, GSIA, Carnegie Mellon
University, Pittsburgh, PA.
Raman, N.; Rachamadugu, R. V.; and Talbot, F. B. 1989.
Real time scheduling of an automated manufacturing cen-
ter. European Journal of Operational Research 40:222–
242.
Sen, A. K., and Bagchi, A. 1996. Graph search methods for
non-order-preserving evaluation functions: Applications to
job sequencing problems. Artificial Intelligence 86(1):43–
73.
Sun, X.; Noble, J. S.; and Klein, C. M. 1999. Single-
machine scheduling with sequence dependent setup to min-
imize total weighted squared tardiness. IIE Transactions
31(2):113–124.
University of Nottingham. 2007. Inter-disciplinary
scheduling network. http://www.asap.cs.nott.ac.uk/iol/is-
network/.
Zhu, X., and Wilhelm, W. E. 2006. Scheduling and lot
sizing with sequence-dependent setup: A literature review.
IIE Transactions 38(11):987–1007.


