
Challenging Scheduling Problem in the field of System Design

Alessio Guerri and Michele Lombardi and Michela Milano
Department of Electronics, Computer Science and Systems (DEIS)

Alma Mater Studiorum - University of Bologna
Viale Risorgimento 2, 40136, Bologna, Italy

fax: +39 051 20 93073
emails:{aguerri, mlombardi, mmilano}@deis.unibo.it

Abstract

Scheduling problems are of primary importance in many lo-
gistical, design and industrial applications. They can be very
heterogeneous and often mix with a resource allocation phase
which makes the problem particularly challenging.

A number of solution techniques has been developed to deal
with such problems. It is therefore important, for evaluation
purposes, to dispose of relevant instances, possibly represent-
ing real problems.

In this paper we present a real world allocation and schedul-
ing problem from the field of embedded system design; in
this context, we describe four variants and devise an instance
generation algorithm.

Introduction
With the term “embedded system” we refer to any informa-
tion processing device embedded into another product. In
the last years their diffusion has been growing at a surprising
rate: automotive control engines, cellular phones, multime-
dia electronic devices are only few examples of the perva-
sivity of such devices.

Being widely employed in portable devices, these systems
need energy efficient platforms with real time performance:
Multiprocessor Systems on Chips (MPSoCs) are among the
most appealing solutions to these issues.

MPSoCs are multi core, general purpose, architectures
developed on a single chip; each core has low energy con-
sumption and limited computational power: real time level
performance is thus achieved by extensive parallelization.

Given a target application, usually described as a task
graph, to design a system amounts to allocate hardware re-
sources to processes and to compute a schedule (Xie & Wolf
2000). Since these devices always run the same applica-
tion in a well-characterized context, it is possible to spend a
large amount of time for finding an optimal allocation and
scheduling off-line and then deploy it on the field, instead
of using on-line, dynamic (sub-optimal) schedulers (Culler
1999; Compton & Hauck 2002).

In this paper we propose some variants of allocation and
scheduling problems arising in the system design context.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We propose four case studies we have faced so far, concern-
ing deterministic and conditional task graphs, different ob-
jective functions and different graph structures. These prob-
lems contain important aspects to be considered: alterna-
tive resources, variable durations, alternative routes inthe
task graph representing the application, discrete, additive
and unary resources.

We believe that the problem classes we took into account
(pure scheduling problems, mixed allocation and scheduling
problems, both deterministic and stochastic) could be good
application candidates for a scheduling contest. In addition,
we worked on both random and real world instances: we
think that a benchmark for a scheduling competition should
take into account both cases to effectively test the qualityof
a scheduling tool.

Finally, we have implemented an instance generator, de-
scribed in the paper, that could be used for generating “real-
istic” instances1.

Problem description
In this Section we describe the aspects common to the four
case studies we considered. In particular, we describe the
architecture of the MPSoC platform (and thus the hardware
resources to be allocated to processes) and the characteris-
tics of the applications to be executed on top of it.

The architecture
The MPSoC model we consider consists of a pre-defined
number of distributed Processing Elements (PE) as depicted
in figure 1. All nodes are assumed to be homogeneous and
composed by a processing core and by a low-access-cost lo-
cal scratchpad memory.

The local memory is of limited size, therefore data in ex-
cess must be stored externally in a remote on-chip memory
with higher latency, accessible via the bus.

Scratchpad memories, unlike caches, are managed at ap-
plication level and statically partitioned before the execution
starts. The bus for state-of-the-art MPSoCs is a shared com-
munication resource, and serialization of bus access requests
of the processors (the bus masters) is carried out at transac-
tion basis by a centralized arbitration mechanism. Modeling

1The generator is available at: http://www-lia.deis.unibo.it/
Staff/AlessioGuerri/SchedLIB/

BUS INTERFACE

PROCESSOR

TIGHTLY COUPLED
MEMORY

SHARED SYSTEM BUS

PE
0

PE
p-1

REMOTE ON CHIP MEMORY

. . . .

Figure 1: Single chip multi-processor architecture.

the bus at such a granularity would make the problem overly
complex, therefore a more abstract additive bus model was
devised, explained and validated in (Beniniet al. 2005)
where each task can simultaneously access the bus requir-
ing a portion of the overall bandwidth.

In some platforms each PE can independently be tuned to
work at different frequencies, according to the required com-
putation workload. This feature is referred to as Dynamic
Voltage Scaling (DVS) and allows dramatic improvements
in energy efficiency.

The application

The target application to be executed on top of the hardware
platform is represented as a Task Graph (TG). A TG (see
figure 2A) is a directed acyclic graph〈T, A〉, whereT is
the set of nodes modeling generic tasks (e.g. elementary
operations, subprograms, ...) andA the set of arcs modeling
precedence constraints (e.g. due to data communication).

Indeed, real applications never exhibit a deterministic be-
havior: task durations are not known in advance, conditional
branches (like if-then-else statements) can be present andso
on. Sometimes it is thus worthwhile to take into account
some of those elements of uncertainty. An interesting case
is that of conditional branches, since every computer pro-
gram contains many of them, and they drastically affect the
application behavior.

Explicitly modeling conditional branches turns a TG into
a Conditional Task Graph (CTG). A CTG (see figure 2B) is
a triple 〈T, A, C〉, whereT is the set of nodes/tasks,A the
set of arcs/precedence constraints, andC is a set of condi-
tions, each one associated to an arc, modeling what should
be true in order to choose that branch during execution. We
assume to know for each condition the probabilityp(ci) that
ci is true: code profiling or other techniques can be used to
estimate such probabilities.

Tasks in the application communicate by writing/reading
memory buffers (communication queues) and can have in-
ternal state information. Their behaviour can be described
by five phases (see figure 3): they read all input queues (one
per ingoing arc; phaseINPUT), read stored state informa-
tion, if any (RS); then perform some computation (EXEC)
and finally write their state information (WS) and all output
data for successor tasks (OUTPUT).

Figure 2: A task graph and a conditional task graph

Memory requirements for each phase (program data, in-
ternal state and communication queues) are annotated onto
the graph and can be allocated either on the local or on
the remote storage devices. In particular, communication
queues can be locally allocated only if both the sender and
the receiver tasks execute on the same PE.

In case of remote memory allocation, tasks need to access
the bus to read/write data. As introduced above, the bus ac-
cess is granted or denied by an arbitration mechanism. How-
ever, under the additive model assumption, bus requests are
defined in terms of bandwidth usage. Each task phase has a
different bandwidth requirement: communication and inter-
nal state access are bus intensive, and thus use a large por-
tion of the total bandwidth. On the opposite in the execution
phase bus is accessed rarely, only for refill cycles following
a cache miss, and thus the bus usage is much lower.

INPUT OUTPUTEXECRS WS

Figure 3: Execution model of a task

The worst case execution time (WCET) is specified for
each node/task and plays a critical role whenever application
real time constraints are to be met. Tasks duration depends
both on memory allocation choices and frequency assign-
ments on processing elements (in case DVS is supported).
Communication and state access phases can last up to three
or four times more if memory is allocated in the remote
device rather than on the local scratchpad. An analogous
difference, although much lower, affects also the execution
phase. Frequency assignment influences the duration in an
intuitive way.

There is a complex interaction between bus usage and
completion time (makespan): to avoid bus congestion one
would be tempted to pack as many tasks as possible on the
same PE, in order to allocate communication queues on lo-
cal memories. Unluckily, in this way the application par-
allelism is not exploited and the completion time increases,
despite local queue allocation tends to reduce task durations.
In practice the presence of real time constraints often forces
to strongly parallelize the application: this decreases the
makespan, but increases the bus usage as well.

The basic problem is to allocate hardware resources (pro-
cessing elements, storage devices, working frequencies, bus

bandwidth) to tasks and to provide a schedule meeting real
time constraints. We considered several variants of this
hardware design problem, with different graph structure,
platform features and cost function.

Case studies
In the context of the hardware design problem introduced in
the previous section, we consider four case studies coming
from real scenarios. Although they are similar, each of them
has peculiarities which set different issues.

In the following, we will describe our case studies, point-
ing out the characteristics making them interesting bench-
marks for a scheduling contest.

As a general remark, for scheduling purpose in all cases
tasks were split into several activities to take into account
the different bandwidth usage of each execution phase, and
to allow a more realistic model of precedence relations.

Case study 1: Allocation and Scheduling Problem
with deterministic task graphs (D-ASP)
The inputs of the problem are the target platform description
(number of processing nodes, size of storage devices and
bus bandwidth), and the task graph. Each task is annotated
with a duration and memory requirements for program data,
internal state and communication data.

The problem is to allocate resources (processing elements
and memory slots) to tasks, and to compute a schedule; all
the real-time constraints and all the capacity constraintson
the resources have to be met.

The objective is to minimize the total amount of data
transferred on the bus, being the communication resources
one of the major bottlenecks in modern MPSoCs. The bus
is used when a task allocates data on the remote memory
and when two communicating tasks are allocated on differ-
ent processors.

In this case study, we consider task graphs representing
pipelines, in the sense that each taskti reads input data from
taskti−1 and writes output data for taskti+1.

The pipeline workload is typical, for example, of multi-
media streams encoding/decoding, where the same sequence
of tasks is repeated an unknown number of times. To ana-
lyze the pipeline behaviour at working rate, several repeti-
tions of the same task must be scheduled. In particular, ifn
is the number of tasks in the pipeline, aftern repetitions the
pipeline is at full rate; therefore, in the D-ASPn2 repetitions
of each task must be scheduled. This leads to additional
precedence constraints stating that tasks must be executed
in order: in other words, thej − th execution of a taskti
must execute before the(j + 1)− th execution and after the
(j − 1) − th.

In a pipeline, the real-time requirements translate into
throughput constraints: the time between two consecutive
data supplied in output must be lower than a given value.
This posts a constraint on the maximum time between two
consecutive executions of the same task, and in particular of
the last one in the pipeline.

In the D-ASP we deal with alternative unary resources
(the processing elements), shared resources (the memories)

and the bus.
The main difficulty of the problem is that the objective

function and the scheduling constraints are conflicting one
each other: while the objective function aims at packing
as much tasks as possible on the same processing element
(so as to minimize the communications), the real-time con-
straints suggest to parallelize the tasks execution on different
processors (to reduce the pipeline throughput).

In addition, we can see that the objective function does
not depend on the schedule, being the communications on
the bus completely defined once tasks and memory require-
ments allocation are decided.

We have generated and solved D-ASP instances with a
number of tasks up to10 and a number of processing ele-
ments up to9. We remind that, since each task is split into
multiple activities (input data reading/writing, internal state
reading/writing, execution) and we analyze a pipeline, we
actually scheduled up to5 × 102 activities.

Case Study 2: Allocation and Scheduling Problem
with conditional task graphs (C-ASP)

The C-ASP case study is similar to the D-ASP, but we con-
sider generic TGs and we explicitly take into account the
presence of conditional branches in target application.

Given a CTG with generic structure and a MPSoC plat-
form, we want to compute an optimal allocation of process-
ing elements and storage devices minimizing the expected
value of the bus traffic; we also want to provide a schedule
guaranteed to meet a global deadline constraint in all scenar-
ios.

In the allocation, local memory capacities cannot be ex-
ceeded; if the remote memory is used to store program data,
internal state or communication queues, tasks generate bus
traffic exactly as in the D-ASP.

As in the previous case tasks are split into activities,
whose duration depends on the memory allocation; in the
schedule we chose to assign a unique start time to each ac-
tivity, regardless it executes or not (see figure 4): this is a
common practice in the related literature (Brunnbaueret al.
2003; Shin & Kim 2003). Unlike in the D-ASP, tasks are
executed only once.

Figure 4: Reference Conditional Task Graph

We ran experiments on two test sets. The first contains
slightly structured instances, i.e. with very short tracksor
even singleton nodes: due to this lack of precedence rela-
tions computing a feasible schedule appears to be the most
challenging problem component. We were able to solve
slightly structured instances up to 6 PEs, 34 tasks, split into
64 activities.

On the opposite, instances of the second group are com-
pletely structured (one head, one tail, long tracks). Here the
high number of arcs, and thus of communication queues,
sets the allocation as the core problem. We were able to
solve instances in this group up to 6 PEs, 25 tasks, 95 activ-
ities.

Finally, we also considered the case when the objective
function to be minimized is the expected makespan, instead
of the communication cost. This made the problem very
difficult to solve with our approach, to the point that we had
to dismiss the allocation phase and focus only on computing
an optimal schedule for a fixed PE and memory mapping.

We performed experiments on a third set of instances
with characteristics somehow in-between those of the other
groups. We were able to solve these “pure” scheduling prob-
lems up to 6 PEs, 105 activities.

Case Study 3: Dynamic Voltage Scaling Problem
with pipelined deterministic task graphs (P-DVSP)
As introduced in the Problem description section, recent
MPSoC platforms can tune the working frequency of each
processing node separately. In this context, the Dynamic
Voltage Scaling Problem arises. In the P-DVSP we consider
energy-aware MPSoCs. The problem input is the descrip-
tion of the platform and the task graph. In particular, the
platform is described through the number of processing ele-
ments and a set of frequencies each processor can run, with
the energy consumption at each frequency. In addition, we
have a time overhead and an energy cost for switching from
each frequency to each other.

For this case study, the task graph is a pipeline. Each
task is annotated with the duration (in clock cycles) and the
size of communication data. Memory capacity constraints
are not considered, assuming that each memory slot is large
enough to contain all the data necessary for the execution.

The problem is to allocate tasks to processors, decide a
running frequency for each task and schedule the task exe-
cution, meeting all the real-time constraints. The objective
is to minimize the total energy consumption: energy is con-
sumed when a task executes, when two tasks executing on
different processors communicate using the bus and when a
processor switches its frequency. The power minimization
is important, for example, when the MPSoC is employed in
a battery-operated device such as a mobile phone.

To fulfill the real-time requirements longer tasks must
usually execute at higher speeds, and this gives space for
the shorter tasks to execute at a lower speed reducing the en-
ergy consumption. In this manner, it can be the case that a
number of tasks execute on the same processor at different
speeds: scheduling two tasks running at different speed one
just after the other causes an energy consumption that af-
fects the objective function and a time overhead that affects

the makespan. As for the D-ASP case study, allocation and
scheduling are somehow conflicting.

We have generated and solved P-DVSP instances with up
to 10 PEs (able to run from3 to 6 different speeds) and 10
tasks. Each task is composed of the execution and the com-
munication data reading/writing activities and is scheduled
several times, thus we scheduled up to3 × 102 activities.

Case Study 4: Dynamic Voltage Scaling Problem
with generic deterministic task graphs (G-DVSP)
We address the same problem described as case study 3 con-
sidering generic task graphs. The main difference is that
a task can possibly read data from more than one preced-
ing task and possibly write data that will be read by more
than one following task. The number of reading and writing
activities can become considerably higher, being higher the
number of edges in the task graph. This leads to a higher par-
allelism between tasks and thus the problem becomes much
harder.

In the G-DVSP (as in the C-ASP) we consider a single
repetition of the task graph. Real-time constraints are im-
posed on processors and tasks deadline: each task must end
the execution before a given time and the computational
workload of each processor must be carried out before a
given time.

We generated and solved G-DVSP instances with up to6
PEs and76 activities (14 execution tasks and62 communi-
cation activities between them). As one can see, the size of
the instances we can solve is lower than the other case stud-
ies. In addition, we experimentally found that, even if in the
mean case the search time is comparable with the other case
studies, some instances are extremely hard to solve. Typi-
cally these instances have task graphs with high parallelism
or an optimal solution where the task end times are very
close to the deadlines.

Related work
The mapping and scheduling problems on multi-processor
systems have been studied extensively in the past. An
early example is represented by the SOS system (Prakash
& Parker 1992). SOS considers processor nodes with local
memory, connected through direct point-to-point channels.
The algorithm does not consider real-time constraints.

All the case studies introduced in the previous section
have been considered in other works. The pipelined work-
load, typical of several real applications, has been studied,
for example, in (Beniniet al. 2005), (Chatha & Vemuri
2002) and (Fohler & Ramamritham 1997). Energy-aware
platforms have been studied in several works; the first DVS
approach for single processor systems which can dynami-
cally change the supply voltage over a continuous range is
presented in (Yao, Demers, & Shenker 1995). More recent
works on the argument can be found in (Xie, Martonosi, &
Malik 2005), (Jejurikar & Gupta 2005), (Andreiet al. 2004),
(Andreiet al. 2006), (Beniniet al. 2006), to cite few.

Different platforms and task graphs have been considered:
(Thorsteinsson 2001) considers a multi-processor platform
where the processors are dissimilar; (Palazzari, Baldini,&

Figure 5: Possible probability distributions of a random pa-
rameter

Coli 2004) consider a task graph of periodic tasks with some
aperiodic tasks; (Grossmann & Jain 2001) work on a sce-
nario similar to our case study 4.

Different objective functions can be also taken into ac-
count. A good survey of several objective functions typical
of scheduling problems can be found in (Hooker 2004).

Many researchers have also worked extensively on
the problem of allocating and scheduling conditional,
precedence-constrained tasks on processors in a distributed
real time system, extremely important in the system design
community (Xie & Wolf 2000). Optimization of bus access
in the context of CTG scheduling is considered in (Lombardi
& Milano 2006) and (Pop, Eles, & Peng 2000).

Among related approaches, (Beck & Wilson 2005; 2004)
consider stochastic activity durations; (Vilı́m, Barták, &
Cepek 2005) and (Beck & Fox 2000; 1999) deal respectively
with optional or alternative activities.

Whatever platform or problem description is considered,
it is important to test the quality of the solving tool on ap-
propriate instances, able to describe hard problems that turns
out to be also realistic. In (Davidovic & Crainic 2006)
the authors analyze in deep the characteristics of multi-
processor scheduling problems with communication delays
(MSPCD) proposing an accurate instance generator able to
create benchmarks with realistic platforms and task graphs.
(Kwok & Ahmad 1999) propose a set of MSPCD instances
to compare 15 scheduling algorithms described in literature.
A set of benchmarks is also proposed in (Coll, Ribeiro, & de
Souza 2002) and (Tobita & Kasahara 2002), but communi-
cation delays are not accounted; in particular, (Coll, Ribeiro,
& de Souza 2002) consider smaller instances, but platforms
with dissimilar processors. (Hall & Posner 2001) present
an instance generator independent of the problem character-
istic, but useful to evaluate and compare different solving
algorithms.

About the Instances
The study of allocation and scheduling problems on MP-
SoCs required to collect and build a large amount of in-
stances, for many different purposes.

In particular, we performed our tests on three type of in-
stances: random graphs and platforms, randomly generated
synthetic benchmarks and real applications2.

Random instances
To verify the effectiveness of a solution method, as well as to
get some insight on the problem structure it is crucial to be
able to perform tests on a large number of relevant, possibly
well known instances.

As for the relevance, real world instances are the best
choice: unluckily they are difficult and time consuming to
build. To overcome this problem we realized a random in-
stance generator.

Since some real world instances were available, we chose
to devise a graph generation algorithm able to mimic their
peculiarities; in particular, since real applications areof-
ten quite structured, the generator was primarily designed
to build graphs of that sort.

At the same time, for evaluation and research purposes
(e.g. to perform complexity characterization) it is very im-
portant to be able to generate instances with certain desired
properties (e.g. with different level of parallelism, branch-
ing factors, number of precedence relations); therefore, each
step of the generation procedure has to be controlled with
high precision. In our case this is done by means ofran-
domized input parameters.

We used randomized parameters of two types, respec-
tively described by their span (min, max) or their mean and
variance. In both cases a probability distribution law can be
specified (uniform, square, exponential; Gaussian probabil-
ity is to be added). Figure 5 shows the distribution functions
that can be modelled in our generator.

The algorithm we use is described step by step in the fol-
lowing, where we refer as “fork” to any node with more than
one outgoing arc, and as “join” to any node with more than
one ingoing arc. An example of the graph generation steps
is depicted in figure 6.

A. Head generation:A random number of head nodes is
generated, based on aheads number parameter

B. Tails generation: The minimum specified number of
tail nodes (tails number parameter) is generated and
connected 1 to 1 to the head nodes.

C. Expansion loop: A random arc with a non fork
source and non join destination is chosen. The arc is re-
placed with a random number of series. The operation
is controlled by abranching factor andseries
length parameter. If no suitable arc exists a single 1
length series is generated. The process is repeated un-
til the maximum number of nodes (nodes number pa-
rameter) is reached.

2A repository of allocation and scheduling problem instances
can be found at http://www-lia.deis.unibo.it/Staff/AlessioGuerri/
SchedLIB/

Figure 6: Task graph generation algorithm

D. Tails completion: A random number of tail nodes is
picked, and arcs are consequently removed to turn join
nodes into tails.

E. Arc insertion: Extra arcs are added according to an-
other generation parameter (extra arcs number)

Each time a node or arc is created the attributes of the
associated task/communication queues are computed; again
the operation is controlled by random parameters. At the
present time the attribute sets it generates are those of the
case studies we considered, but we are currently working to
make it able to generate any node and arc attribute.

A deadline value is computed by multiplying the length
of the longest path for a specified factor. The file format
of the generated instances is compliant with that of TGFF,
an instance generator used in the system design community
(Dick, Rhodes, & Wolf 1998). Finally, the algorithm can
also produce conditional graphs.

A second, much simpler, generator was also realized to
build suitable platforms for a given graph. The computed
number and attributes of hardware resources (PEs, memory
devices, etc.) are based on the graph and can be controlled
(again) by means of random parameters.

Randomly generated synthetic benchmarks

Since we defined the problem by making some simplifying
assumptions, there is a certain misalignment between our
model and the real embedded system. If the solutions we
provide are too far from reality they are of no use: specific
instances and tests had to be devised to evaluate the entity of
such misalignment.

We therefore generated a large set of instances with the
same algorithm described above; such instances were turned
into synthetic applications by mapping nodes to real pro-
cesses performing some computation and communicating
some data.

Such applications were then executed on MPARM3, a
MPSoC platform simulator, to compute all non structural
graph properties (such as task durations, memory require-
ments, etc . . .).

Finally, the instances were solved: the optimal allocation
and schedule was implemented and its real cost, resource
usage and execution time compared against the theoretical
one.

Realistic applications
When dealing with a real problem the most interesting thing
is always to tackle real instances. Therefore, a limited num-
ber of the instances we used represented applications of
practical use, such as MPEG or GSM encoding/decoding.

In these cases a careful parsing step was needed to recog-
nize and extract a task graph representation from the applica-
tion code. Using MPARM, each task has been run alone on
a processor a large number of times, collecting the mean and
the worst execution and communication times. These values
were then re-injected into the graph. Finally, the resulting
instances were solved and evaluated as in the previous case.

Considerations on the instance collection
We worked on several kinds of problem instances: random,
real and realistic, both for the deterministic and the stochas-
tic case; we believe all these problem classes should be taken
into account when selecting a benchmark for a scheduling
competition.

In fact, on one hand the performance of a scheduling tool
has to be tested against problems with different character-
istics, graph structure, resources, etc. Randomly generated
instances enable us to perform this kind of tests. At the same
time a scheduler, in order to be any useful, must be able to
propose executable solutions to real world instances: it is
therefore important to test it on real or at least realistic in-
stances.

Finally, given that real world is quite never determinis-
tic, a scheduling tool must not only tackle deterministic in-
stances, but also be able to deal with stochastic scenarios
without loosing efficiency.

We believe that the kind of instances proposed make pos-
sible to test the strength of a scheduling tool when facing
a large variety of cases that can possibly happen in the real
world.

Conclusions
We presented an allocation and scheduling problem arising
in the design flow of modern embedded systems. In particu-
lar we considered four problem variants, with different cost
function (bus traffic and energy consumption), graph struc-
ture (pipeline, generic, conditional), platform features.

We analyzed their peculiarities and we realized a flexible
instance generator; we characterized a number of generated
task graphs by means of synthetic benchmarks and we col-
lected a small number of instances representing real appli-
cations.

3See the project homepage at http://www-micrel.deis.unibo.it/
sitonew/research/mparm.html

We believe the problem we described to be of great inter-
est, both for its complexity and for its practical uses.

Planned future developments include the improvement of
the instance generation procedure with two main purposes:
to build graphs with any kind of structure and to easily incor-
porate different application specific attributes (e.g. duration,
memory requirements, available working frequencies).

We are also starting to tackle new problem variants: for
example the case when the exact value of task durations is
not know, but only a lower and an upper bound, and possibly
a probability distribution; the goal is to provide a flexible
schedule with guaranteed feasibility, or maximizing some
robustness measure.

Another interesting case is that of platforms running mul-
tiple applications/task graphs at the same time. In this case
an optimal allocation and schedule must be provided for
each possible groups of TGs, together with a transition table
describing how to switch from a configuration to another.

References
Andrei, A.; Schmitz, M.; Eles, P.; Peng, Z.; and Al-
Hashimi, B. 2004. Overhead-conscious voltage selec-
tion for dynamic and leakage power reduction of time-
constraint systems. InProcs. of DATE2004, 518–523.
Andrei, A.; Benini, L.; Bertozzi, D.; Guerri, A.; Milano,
M.; Pari, G.; and Ruggiero, M. 2006. A cooperative, ac-
curate solving framework for optimal allocation, schedul-
ing and frequency selection on energy-efficient mpsocs. In
Procs. of SOC-2006.
Beck, J. C., and Fox, M. S. 1999. Scheduling alternative
activities. InProcs. of AAAI/IAAI-99, 680–687.
Beck, J. C., and Fox, M. S. 2000. Constraint-directed
techniques for scheduling alternative activities.Artificial
Intelligence121(1-2):211–250.
Beck, J. C., and Wilson, N. 2004. Job shop scheduling with
probabilistic durations. InProcs. of ECAI-04, 652–656.
Beck, J. C., and Wilson, N. 2005. Proactive algorithms
for scheduling with probabilistic durations. InProcs. of
IJCAI-05, 1201–1206.
Benini, L.; Bertozzi, D.; Guerri, A.; and Milano, M. 2005.
Allocation and scheduling for mpsocs via decomposition
and no-good generation. InProcs. of CP-2005, 107–121.
Benini, L.; Bertozzi, D.; Guerri, A.; and Milano, M. 2006.
Allocation, scheduling and voltage scaling on energy aware
mpsocs. InProcs. of CPAIOR-2006, 44–58.
Brunnbauer, W.; Wild, T.; Foag, J.; and Pazos, N. 2003.
A constructive algorithm with look-ahead for mapping and
scheduling of task graphs with conditional edges. InDSD,
98–103. IEEE Computer Society.
Chatha, K. S., and Vemuri, R. 2002. Hardware-software
partitioning and pipelined scheduling of transformative ap-
plications. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems10(3):193–208.
Coll, P. E.; Ribeiro, C. C.; and de Souza, C. C. 2002. Test
instances for scheduling unrelated processors under prece-
dence constraints. Technical report. http://www-di.inf.puc-
rio.br/ celso/grupo/readme.ps.

Compton, K., and Hauck, S. 2002. Reconfigurable com-
puting: a survey of systems and software.ACM Computing
Surveys34(2):171–210.

Culler, D.A., S. J. 1999.Parallel Computer Architecture:
A Hardware/Software Approach. Morgan Kaufmann.

Davidovic, T., and Crainic, T. G. 2006. Benchmark-
problem instances for static scheduling of task graphs
with communication delays on homogeneous multiproces-
sor systems.Computers & Operations Research33:2155–
2177.

Dick, R.; Rhodes, D.; and Wolf, W. 1998. Tgff task graphs
for free. codes00:97.

Fohler, G., and Ramamritham, K. 1997. Static scheduling
of pipelined periodic tasks in distributed real-time systems.
In Procs. of EUROMICRO-RTS97, 128–135.

Grossmann, I. E., and Jain, V. 2001. Algorithms for hy-
brid MILP/CP models for a class of optimization problems.
INFORMS Journal on Computing13(4):258–276.

Hall, N. G., and Posner, M. E. 2001. Generating ex-
perimental data for computational testing with machine
scheduling applications.Operations Research49:854–865.

Hooker, J. N. 2004. Planning and scheduling by
logic-based Benders decomposition. Technical report.
http://web.tepper.cmu.edu/jnh/planning.pdf.

Jejurikar, R., and Gupta, R. 2005. Dynamic slack reclama-
tion with procrastination scheduling in real-time embedded
systems. InProcs. of DAC2005, 111–116.

Kwok, Y. K., and Ahmad, I. 1999. Benchmarking and
comparison of the task graph scheduling algorithms.Jour-
nal of Parallel and Distributed Computing59(3):381–422.

Lombardi, M., and Milano, M. 2006. Stochastic allocation
and scheduling for conditional task graphs in mpsocs. In
Procs. of CP-2006, 299–313.

Palazzari, P.; Baldini, L.; and Coli, M. 2004. Synthesis
of pipelined systems for the contemporaneous execution
of periodic and aperiodic tasks with hard real-time con-
straints. InProcs. of IPDPS04, 121–128.

Pop, P.; Eles, P.; and Peng, Z. 2000. Bus access optimiza-
tion for distributed embedded systems based on schedula-
bility analysis. InProcs. of DATE-00, 567.

Prakash, S., and Parker, A. 1992. SOS: Synthesis
of application-specific heterogeneous multiprocessor sys-
tems. Journal of Parallel and Distributed Computing
16(4):338–351.

Shin, D., and Kim, J. 2003. Power-aware scheduling
of conditional task graphs in real-time multiprocessor sys-
tems. In Verbauwhede, I., and Roh, H., eds.,ISLPED, 408–
413. ACM.

Thorsteinsson, E. S. 2001. A hybrid framework integrating
mixed integer programming and constraint programming.
In Procs. of CP2001, 16–30.

Tobita, T., and Kasahara, H. 2002. A standard task graph
set for fair evaluation of multi-processor scheduling algo-
rithms. Journal of Scheduling5(5):379–394.

Vilı́m, P.; Barták, R.; and Cepek, O. 2005. Extension of
O(n log n) filtering algorithms for the unary resource con-
straint to optional activities.Constraints10(4):403–425.
Xie, Y., and Wolf, W. 2000. Co-synthesis with custom
asics. InProcs. of ASP-DAC-00, 129–134. ACM.
Xie, F.; Martonosi, M.; and Malik, S. 2005. Bounds on
power savings using runtime dynamic voltage scaling: an
exact algorithm and a linear-time heuristic approximation.
In Procs. of ISPLED05, 287–292.
Yao, F.; Demers, A.; and Shenker, S. 1995. A scheduling
model for reduced CPU energy. InProcs. of FOCS95, 374–
382.

