
A Test Bed for Manufacturing Planning and Scheduling:
Discussion of Design Principles

Claude Le Pape

ILOG S.A.
9, rue de Verdun

F-94253 Gentilly Cedex
clepape@ilog.fr

Abstract
The development of a public test bed for manufacturing
planning and scheduling brings a lot of design issues, along
several dimensions: the content of the test bed, the testing
protocol, the format of the data, and the management of the
results obtained. The objective of the present paper is to
discuss these issues and explain the rationale behind the
choices that have been made in MaScLib, a library of
combined manufacturing planning, batching, and scheduling
problem instances.

Introduction
Manufacturing rough plans and detailed schedules must
establish a compromise between antagonistic optimization
criteria: meet as much as possible of the established and
expected customer demand; deliver customer demands on
time; reduce production costs (processing costs, resource
usage costs, setup costs, cleaning costs); keep little value in
inventories without risking starvation, etc. Usual practice is
often very unsatisfactory in this respect. For example,
rough plans are often built by averaging setup times and
costs, even when variations are significant; production
batch sizes are determined by economical considerations,
with no respect to the distribution of demand due dates;
detailed schedules are built and maintained under fixed
resource availability and production-order-to-demand
pegging assumptions. In many cases, globally sub-optimal
results are obtained, due to the fact that at some step in the
process an important optimization criterion and the
associated constraints have been ignored.

New integrated planning, batching, and scheduling models,
aimed at ensuring greater consistency between the
planning, batching, and scheduling steps, and, as a result,
at delivering better plans and schedules, must be
developed. Focusing on such integrated models has three
advantages: the approximations needed at each problem-
solving step are made explicit and the related issues clearly
identified; global problem-solving methods can be

designed and implemented towards a unique well-defined
objective; these methods can be evaluated against global
problem instances. The underlying optimization problems
are, however, extremely difficult, and necessitate both
theoretical and experimental research. To motivate and
guide such research, the ILOG Plant PowerOps
development team decided to introduce and maintain an
organized set of problem instances, MaScLib, first focused
on manufacturing scheduling [Nuijten et al., 2004], and
later extended to the combination of planning (deciding
which products to manufacture and which demands to
deliver), batching (creating production orders and
organizing the flow of materials within the factory), and
scheduling (allocating time and resources to the activities
composing each production order) [Le Pape & Robert,
2007].

The objective of the present paper is to discuss the main
issues encountered during the design and development of
MaScLib, and explain the rationale behind the choices that
have been made. The issues are classified in four
categories:

• Content: the optimization problem proposed to the

scientific community.
• Protocol: the ways in which problem-solving methods

shall be applied to the proposed problem instances and
evaluated.

• Format: the type and organization of files describing
the problem instances.

• Result: the exposure of results obtained by different
researchers on different instances.

Each of these categories is discussed in turn, in an attempt
to explain how the overall goal behind the development of
MaScLib influenced the choices we have made.

Content
In the design and development of industrial optimization
applications, one major concern is that the optimization
algorithm must be robust. By “robust,” we mean not only
that the algorithm must provide “good” solutions to
problem instances of different size and numerical
characteristics, but also that the algorithm must continue to
work well when constraints are added or removed. As
mentioned in [Chabrier et al., 2004], this expectation is
heightened in constraint programming as its inherent
flexibility is often put forward as its main advantage over
other optimization techniques. In practice, it has important
effects on the reinforcement of problem formulation,
search management, the advantages of parallel search, the
applicability of different optimization techniques including
hybrid combinations, etc.

The benchmark problem suites that are used by the
academic community generally do not reflect this
requirement for robustness. They are on the contrary
typically focused on simple (to state) complex (to solve)
problems, e.g., the Job Shop Scheduling Problem, as
defined in its decision form in [Garey & Johnson, 1979].
Such simple but complex problems precisely present two
advantages from an academic perspective:

• They are easy to state, to reason about, to teach and

talk about. As a result, their fundamental nature is
understood by many potential contributors.

• Their complexity is due to a small set of features that
are often encountered in real life. As a result, progress
on these features has potential impact on many
applications.

Yet there is no such thing as, for example, the Job Shop
Scheduling Problem, so the impact of new research results
remains hard to evaluate, as long as these results are not
actually applied to real cases.

For a benchmark problem suite to be the most profitable,
some equilibrium must be established between the
simplicity of the proposed problem and the presence of
side constraints. A too detailed real application is not likely
to grasp the interest of the research community and lead to
widely applicable results. A too simple problem is more
likely to lead to an abundant scientific literature, but in the
end the really important results still have to be sorted out,
at their expense, by application developers.

Several industrial researchers have tried to provide
benchmark problems based on a simple core problem and
extensions. For example, Caseau and Kökény [1998]
provide both “B” and “G” instances of an inventory
management problem. Compared to the “B” instances, the
“G” instances include a side constraint: the pieces of

equipment in inventory must be regularly maintained in a
maintenance shop of limited capacity. In addition, the
purchase of new equipment and the substitution of
different types of equipment may or may not be allowed.
Similarly, the ROCOCO benchmark problem suite
[Bernhard et al., 2002] [Chabrier et al., 2004] includes six
optional constraints, leading to 64 different formulations of
21 basic instances. Even though a researcher can, in the
beginning, focus on the simplest version of the problem,
the ultimate goal is to develop problem-solving methods
that are robust to the introduction of the side constraints.

In a similar but systematized spirit, MaScLib proposes
different categories of instances. The simplest category,
“NCOS”, contains instances in which resources are
subjected to “No Calendar”, i.e., are available at all times,
and production recipes are limited to “One Step”. In
addition, all the production recipes require a unique
resource of capacity 1. More complex instances are
gathered in other categories:

• NCGS: No Calendar, General Shop, in which several

activities, linked by temporal constraints, are required
to manufacture final products.

• BROS: BReaks, One Step, in which the resource is
subjected to breaks and production activities can start
before and end after breaks under given conditions.

• BPOS: Breaks and Productivity, One Step, in which
the resource is not only subjected to breaks but also to
variations of its productivity over time.

• PM_NCOS: Parallel Machines, No Calendar, One
Step, in which the unique resource is a group of
equivalent machines, enabling the performance of
several activities in parallel.

• STC_*, where “STC” stands for “Setup Times and
Costs”, in which sequence-dependent setup times and
costs must be considered.

• MM_ STC_*, where “MM” stands for “Multiple
Modes”, in which activities can be performed in
different conditions on different resources.

• UNP_*, where “UNP” stands for “UNPerformed”, in
which it is possible to (i) leave some customer
demands unsatisfied and (ii) leave some activities
unassigned, both at a given cost.

In addition, instances are classified according to the
optimization criteria under consideration:

• Beside production (and possibly setup, non-delivery,

and non-performance) cost, the “a” and “b” instances
include tardiness costs. The “a” instances are such that
different production orders have the same importance
in terms of tardiness, while in “b” instances some
production orders are more important than others.

• The “c”, “d”, and “e” instances include earliness and
storage costs as well. The “c” and “d” instances are
such that it is always better to deliver a demand early
than to store the corresponding product. In addition, in
“c” instances, earliness and tardiness costs are such
that different production orders have the same
importance in terms of earliness and tardiness. The
“e” instances correspond to the more general case, in
which a compromise between storing products and
delivering customers early must be established.

Finally, each instance can be used either for scheduling
only (relying on a set of production orders provided in the
data file) or for planning, batching, and scheduling
(by ignoring these production orders). In the end, the
proposed problem varies from a very simple but complex
scheduling problem “1 | ri,di | Σ iTi” to a planning,
batching, and scheduling problem, with multiple modes per
activity, setup times and costs, arbitrary temporal
constraints, and/or calendars. The hope is that researchers,
starting from the most classical problem, will get interested
in extending their problem-solving methods to side
constraints that are often met in industry.

 Protocol
Once the content and overall organization of the instances
is decided, it is necessary to define how the instances shall
be used, depending on the main purpose of the problem
suite. Different objectives lead to different sets of
instances, different constraints on the testing protocol, and
different ways to evaluate the results.

When the goal is to test how different methods behave in
the case of a particular manufacturing plant, the set of
instances shall be designed to converge on the problems
actually met in this plant, the execution constraints
(e.g., limited CPU time) shall be dictated by the use cases
of planning and scheduling software in this plant, and the
overall evaluation shall be representative of the money that
will be gained by using the software in this plant. This
does not imply that robustness to differences in problem
size, numeric characteristics, and side constraints, is not an
issue. Indeed, customer demand may be seasonal, some
constraints may apply only in night shifts, etc., entailing
important differences from a problem instance to another.

On the opposite, when the objective is directed towards the
evaluation of generic software, aimed to be applicable in
many contexts, the set of instances shall be as diverse as
possible, the execution constraints shall be defined
according to a general feeling of what is acceptable in
practice, and the overall evaluation shall be directed
towards robustness rather than towards pure performance.

In the case of MaScLib, this led to the following choices:

• The set of instances includes both simplifications of

real problems encountered by ILOG customers,
random instances provided by academic researchers,
and instances built to be difficult.

• For each instance, the goal is to provide the best
possible solution in a given time limit, defined with
respect to the problem size. For a given instance and a
given problem-solving method, the result is
normalized by dividing the cost of the solution
obtained in the given CPU time by the cost of the best
known solution.

• The overall evaluation over a set of instances is
obtained as the average of these normalized results
minus 1. This evaluation is often called Mean Relative
Error MRE = average(cost-of-solution-found / cost-of-
best-solution-known) – 1.

As said, these choices are really geared toward evaluating
robustness: the instances are very different one from the
other; the normalized result on a given instance is high
whenever it is known that the solution found is much more
costly than it could have been; and very bad solutions have
a high impact on the MRE. The drawback of this protocol,
however, is that it relies on the cost of best known
solutions, which change all the time as new results are
reported. Ideally, it would of course be better to rely on the
cost of optimal solutions, but for large instances these costs
are unknown. An idea would be to rely on reference costs
found once and for all by a particular problem-solving
method on a particular computer, but then instances on
which the reference solutions are bad would contribute less
to the overall evaluation, which would be very
unsatisfactory.

Format
Providing a “good” problem and a “good” protocol is not
sufficient. The format in which problem instances are
provided shall be simple enough to read; otherwise the
instances will simply not be used. Needless to say, it is
quite difficult to design a simple format enabling the
description of problems with complex side constraints.

For MaScLib, a relational format was adopted. Each
instance is described by a set of tables: a table for global
characteristics of the instance, a table for resources, a table
for production recipes, a table for activities composing
recipes, a table for customer demands, a table for due
dates, etc. Some tables, or some columns in some tables,
are optional, depending on the instance category. For
example, in the NCOS category, all resources have
capacity 1: the CAPACITY column of the RESOURCE
table is omitted.

The advantage of such a format is its natural extensibility.
A researcher can write a reader for NCOS instances and
then extend it to PM_NCOS instances. Globally, it
however appeared that the first reader takes long to
develop. To overcome this drawback, the simplest
instances are also provided in simpler textual format, but
then the researcher has a gap to fill to move from these
simple instances to more complex instances. It is unclear
how a better solution to this issue could be reached.

Results
Once the data sets are distributed, results arrive. It is then
necessary to decide which results to keep. MaScLib
currently consists of about 500 instances. Should twenty
researchers provide results, each with ten variants of a
given problem-solving method, we get about 100.000
figures to manage. Either some infrastructure must be built
to manage these results, or dominated results shall not be
kept and distributed with the problem set.

For many benchmark problem suites, only the best-known
lower and upper bounds are maintained on a publicly
available page. This is indeed the strict minimum.
However, when the main objective is to test the robustness
of problem-solving methods, best-known lower and upper
bounds are clearly insufficient. Indeed, it could be that a
given problem-solving method M provides a lot of best-
known solutions, but also provides catastrophic solutions
on a significant number of instances; while another method
N is not so good at reaching the best-known solutions, but
is on average much better than method M.

For MaScLib, the following policy is currently adopted:

• The results of a problem-solving method that is proven

to be among the three best methods on a significant
subset of instances are systematically kept.

• The results of any other problem-solving method are
eliminated unless this elimination would make a best-
known lower or upper bound disappear from the result
base.

Unfortunately, the outcome of this policy depends on the
order in which results are received and eliminated, which is
not really satisfactory. For example, if method M provides
the best solution for instances A and B but not for instance
C, method N provides the best solutions for instances A
and C but not for instance B, and method P provides the
best solutions for instances B and C but not for instance A,
either M or N or P can be eliminated. At a given time, ties
can be broken by looking at the overall robustness of the
different methods or giving a preference to the methods
documented in the literature, but in general there is no fully
satisfactory policy to make decisions in this respect.

Conclusion
The development of a public test bed for manufacturing
planning and scheduling brings a lot of design issues, along
several dimensions: the content of the test bed, the testing
protocol, the format of the data, and the management of the
results obtained.

Even when the objective of the test bed is clearly defined,
usability and complexity issues along these four
dimensions are encountered. Academic researchers and
application developers should discuss these issues, with the
common objective of improving the benchmark problem
suites made available to the community and, as a result, the
relevance of the research conducted toward a better
resolution of these problems.

Acknowledgements
I wish to thank:

• My colleagues engaged in the development of the

optimization engines of the ILOG Plant PowerOps
tool — Thomas Bousonville, Julien Briton, Filippo
Focacci, Daniel Godard, Emmanuel Guere, Arnaud
Leforestier, Xavier Nodet, Wim Nuijten, Frédéric
Paulin, and Anna Robert — for their contribution to
the gathering of instances, the design of the data
format, and the organization of the overall test set.

• The developers of the ILOG Plant PowerOps

graphical user interface — Dominique Bréheret and
Ali Sadeghin — and testing framework — Philippe
Charman, Virginie Grandhaye, and Marie-Laure
Leroux. These components have been used hundreds
of time to check and register solutions, thereby
contributing to the elimination of bugged solutions and
to the maintenance of accurate (and so precious!)
tables of results.

• Philippe Baptiste and Francis Sourd for the early

discussions we had on the MaScLib topic, as well as
all the researchers who, in addition to the above-
mentioned, already provided us with results or
indirectly contributed — Emilie Danna, Renaud
Dumeur, Antoine Jouglet, Safia Kedad-Sidhoum,
Philippe Laborie, Laurent Perron, Jérôme Rogerie,
Ed Rothberg, and Ruslan Sadykov.

References

Bernhard, R.; Chambon, J.; Le Pape, C.; Perron, L.; and
Régin, J.-C. 2002. Résolution d’un problème de conception
de réseau avec Parallel Solver. In Onzièmes Journées
Francophones de Programmation Logique et
Programmation par Contraintes, Nice, France (in French).

Caseau, Y.; and Kökény, T. 1998. An Inventory
Management Problem. Constraints 3(4):363-373.

Chabrier, A.; Danna, E.; Le Pape, C.; and Perron, L. 2004.
Solving a Network Design Problem. Annals of Operations
Research 130:217-239.

Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability. A Guide to the Theory of NP-Completeness.
W. H. Freeman and Company.

Le Pape, C.; and Robert, A. 2007. Jeux de données pour
l’évaluation d’algorithmes de planification et
ordonnancement. In Cinquièmes Journées Francophones
de Recherche Opérationnelle (FRANCORO) et Huitième
Congrès de la Société Française de Recherche
Opérationnelle et d'Aide à la Décision (ROADEF),
Grenoble, France (in French).

Nuijten, W.; Bousonville, T.; Focacci, F.; Godard, D.; and
Le Pape, C. 2004. Towards an Industrial Manufacturing
Scheduling Problem and Test Bed. In Proceedings of the
Ninth International Conference on Project Management
and Scheduling, Nancy, France.

