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Abstract 
The development of a public test bed for manufacturing 
planning and scheduling brings a lot of design issues, along 
several dimensions: the content of the test bed, the testing 
protocol, the format of the data, and the management of the 
results obtained. The objective of the present paper is to 
discuss these issues and explain the rationale behind the 
choices that have been made in MaScLib, a library of 
combined manufacturing planning, batching, and scheduling 
problem instances. 

Introduction 
Manufacturing rough plans and detailed schedules must 
establish a compromise between antagonistic optimization 
criteria: meet as much as possible of the established and 
expected customer demand; deliver customer demands on 
time; reduce production costs (processing costs, resource 
usage costs, setup costs, cleaning costs); keep little value in 
inventories without risking starvation, etc. Usual practice is 
often very unsatisfactory in this respect. For example, 
rough plans are often built by averaging setup times and 
costs, even when variations are significant; production 
batch sizes are determined by economical considerations, 
with no respect to the distribution of demand due dates; 
detailed schedules are built and maintained under fixed 
resource availability and production-order-to-demand 
pegging assumptions. In many cases, globally sub-optimal 
results are obtained, due to the fact that at some step in the 
process an important optimization criterion and the 
associated constraints have been ignored. 
 
New integrated planning, batching, and scheduling models, 
aimed at ensuring greater consistency between the 
planning, batching, and scheduling steps, and, as a result, 
at delivering better plans and schedules, must be 
developed. Focusing on such integrated models has three 
advantages: the approximations needed at each problem-
solving step are made explicit and the related issues clearly 
identified; global problem-solving methods can be 

designed and implemented towards a unique well-defined 
objective; these methods can be evaluated against global 
problem instances. The underlying optimization problems 
are, however, extremely difficult, and necessitate both 
theoretical and experimental research. To motivate and 
guide such research, the ILOG Plant PowerOps 
development team decided to introduce and maintain an 
organized set of problem instances, MaScLib, first focused 
on manufacturing scheduling [Nuijten et al., 2004], and 
later extended to the combination of planning (deciding 
which products to manufacture and which demands to 
deliver), batching (creating production orders and 
organizing the flow of materials within the factory), and 
scheduling (allocating time and resources to the activities 
composing each production order) [Le Pape & Robert, 
2007].  
 
The objective of the present paper is to discuss the main 
issues encountered during the design and development of 
MaScLib, and explain the rationale behind the choices that 
have been made. The issues are classified in four 
categories: 
 
• Content: the optimization problem proposed to the 

scientific community. 
• Protocol: the ways in which problem-solving methods 

shall be applied to the proposed problem instances and 
evaluated. 

• Format: the type and organization of files describing 
the problem instances. 

• Result: the exposure of results obtained by different 
researchers on different instances. 

 
Each of these categories is discussed in turn, in an attempt 
to explain how the overall goal behind the development of 
MaScLib influenced the choices we have made. 



Content 
In the design and development of industrial optimization 
applications, one major concern is that the optimization 
algorithm must be robust. By “robust,” we mean not only 
that the algorithm must provide “good” solutions to 
problem instances of different size and numerical 
characteristics, but also that the algorithm must continue to 
work well when constraints are added or removed. As 
mentioned in [Chabrier et al., 2004], this expectation is 
heightened in constraint programming as its inherent 
flexibility is often put forward as its main advantage over 
other optimization techniques. In practice, it has important 
effects on the reinforcement of problem formulation, 
search management, the advantages of parallel search, the 
applicability of different optimization techniques including 
hybrid combinations, etc. 
 
The benchmark problem suites that are used by the 
academic community generally do not reflect this 
requirement for robustness. They are on the contrary 
typically focused on simple (to state) complex (to solve) 
problems, e.g., the Job Shop Scheduling Problem, as 
defined in its decision form in [Garey & Johnson, 1979]. 
Such simple but complex problems precisely present two 
advantages from an academic perspective:  
 
• They are easy to state, to reason about, to teach and 

talk about. As a result, their fundamental nature is 
understood by many potential contributors. 

• Their complexity is due to a small set of features that 
are often encountered in real life. As a result, progress 
on these features has potential impact on many 
applications. 

 
Yet there is no such thing as, for example, the Job Shop 
Scheduling Problem, so the impact of new research results 
remains hard to evaluate, as long as these results are not 
actually applied to real cases. 
 
For a benchmark problem suite to be the most profitable, 
some equilibrium must be established between the 
simplicity of the proposed problem and the presence of 
side constraints. A too detailed real application is not likely 
to grasp the interest of the research community and lead to 
widely applicable results. A too simple problem is more 
likely to lead to an abundant scientific literature, but in the 
end the really important results still have to be sorted out, 
at their expense, by application developers.  
 
Several industrial researchers have tried to provide 
benchmark problems based on a simple core problem and 
extensions. For example, Caseau and Kökény [1998] 
provide both “B” and “G” instances of an inventory 
management problem. Compared to the “B” instances, the 
“G” instances include a side constraint: the pieces of 

equipment in inventory must be regularly maintained in a 
maintenance shop of limited capacity. In addition, the 
purchase of new equipment and the substitution of 
different types of equipment may or may not be allowed. 
Similarly, the ROCOCO benchmark problem suite 
[Bernhard et al., 2002] [Chabrier et al., 2004] includes six 
optional constraints, leading to 64 different formulations of 
21 basic instances. Even though a researcher can, in the 
beginning, focus on the simplest version of the problem, 
the ultimate goal is to develop problem-solving methods 
that are robust to the introduction of the side constraints. 
 
In a similar but systematized spirit, MaScLib proposes 
different categories of instances. The simplest category, 
“NCOS”, contains instances in which resources are 
subjected to “No Calendar”, i.e., are available at all times, 
and production recipes are limited to “One Step”. In 
addition, all the production recipes require a unique 
resource of capacity 1. More complex instances are 
gathered in other categories: 
 
• NCGS: No Calendar, General Shop, in which several 

activities, linked by temporal constraints, are required 
to manufacture final products. 

• BROS: BReaks, One Step, in which the resource is 
subjected to breaks and production activities can start 
before and end after breaks under given conditions. 

• BPOS: Breaks and Productivity, One Step, in which 
the resource is not only subjected to breaks but also to 
variations of its productivity over time. 

• PM_NCOS: Parallel Machines, No Calendar, One 
Step, in which the unique resource is a group of 
equivalent machines, enabling the performance of 
several activities in parallel. 

• STC_*, where “STC” stands for “Setup Times and 
Costs”, in which sequence-dependent setup times and 
costs must be considered. 

• MM_ STC_*, where “MM” stands for “Multiple 
Modes”, in which activities can be performed in 
different conditions on different resources. 

• UNP_*, where “UNP” stands for “UNPerformed”, in 
which it is possible to (i) leave some customer 
demands unsatisfied and (ii) leave some activities 
unassigned, both at a given cost. 

 
In addition, instances are classified according to the 
optimization criteria under consideration: 
 
• Beside production (and possibly setup, non-delivery, 

and non-performance) cost, the “a” and “b” instances 
include tardiness costs. The “a” instances are such that 
different production orders have the same importance 
in terms of tardiness, while in “b” instances some 
production orders are more important than others. 



• The “c”, “d”, and “e” instances include earliness and 
storage costs as well. The “c” and “d” instances are 
such that it is always better to deliver a demand early 
than to store the corresponding product. In addition, in 
“c” instances, earliness and tardiness costs are such 
that different production orders have the same 
importance in terms of earliness and tardiness. The 
“e” instances correspond to the more general case, in 
which a compromise between storing products and 
delivering customers early must be established. 

 
Finally, each instance can be used either for scheduling 
only (relying on a set of production orders provided in the 
data file) or for planning, batching, and scheduling 
(by ignoring these production orders). In the end, the 
proposed problem varies from a very simple but complex 
scheduling problem “1 | ri,di | Σ iTi” to a planning, 
batching, and scheduling problem, with multiple modes per 
activity, setup times and costs, arbitrary temporal 
constraints, and/or calendars. The hope is that researchers, 
starting from the most classical problem, will get interested 
in extending their problem-solving methods to side 
constraints that are often met in industry. 

 Protocol 
Once the content and overall organization of the instances 
is decided, it is necessary to define how the instances shall 
be used, depending on the main purpose of the problem 
suite. Different objectives lead to different sets of 
instances, different constraints on the testing protocol, and 
different ways to evaluate the results. 
 
When the goal is to test how different methods behave in 
the case of a particular manufacturing plant, the set of 
instances shall be designed to converge on the problems 
actually met in this plant, the execution constraints 
(e.g., limited CPU time) shall be dictated by the use cases 
of planning and scheduling software in this plant, and the 
overall evaluation shall be representative of the money that 
will be gained by using the software in this plant. This 
does not imply that robustness to differences in problem 
size, numeric characteristics, and side constraints, is not an 
issue. Indeed, customer demand may be seasonal, some 
constraints may apply only in night shifts, etc., entailing 
important differences from a problem instance to another. 
 
On the opposite, when the objective is directed towards the 
evaluation of generic software, aimed to be applicable in 
many contexts, the set of instances shall be as diverse as 
possible, the execution constraints shall be defined 
according to a general feeling of what is acceptable in 
practice, and the overall evaluation shall be directed 
towards robustness rather than towards pure performance.  
 

In the case of MaScLib, this led to the following choices: 
 
• The set of instances includes both simplifications of 

real problems encountered by ILOG customers, 
random instances provided by academic researchers, 
and instances built to be difficult.  

• For each instance, the goal is to provide the best 
possible solution in a given time limit, defined with 
respect to the problem size. For a given instance and a 
given problem-solving method, the result is 
normalized by dividing the cost of the solution 
obtained in the given CPU time by the cost of the best 
known solution. 

• The overall evaluation over a set of instances is 
obtained as the average of these normalized results 
minus 1. This evaluation is often called Mean Relative 
Error MRE = average(cost-of-solution-found / cost-of-
best-solution-known) – 1. 

 
As said, these choices are really geared toward evaluating 
robustness: the instances are very different one from the 
other; the normalized result on a given instance is high 
whenever it is known that the solution found is much more 
costly than it could have been; and very bad solutions have 
a high impact on the MRE. The drawback of this protocol, 
however, is that it relies on the cost of best known 
solutions, which change all the time as new results are 
reported. Ideally, it would of course be better to rely on the 
cost of optimal solutions, but for large instances these costs 
are unknown. An idea would be to rely on reference costs 
found once and for all by a particular problem-solving 
method on a particular computer, but then instances on 
which the reference solutions are bad would contribute less 
to the overall evaluation, which would be very 
unsatisfactory. 

Format 
Providing a “good” problem and a “good” protocol is not 
sufficient. The format in which problem instances are 
provided shall be simple enough to read; otherwise the 
instances will simply not be used. Needless to say, it is 
quite difficult to design a simple format enabling the 
description of problems with complex side constraints. 
 
For MaScLib, a relational format was adopted. Each 
instance is described by a set of tables: a table for global 
characteristics of the instance, a table for resources, a table 
for production recipes, a table for activities composing 
recipes, a table for customer demands, a table for due 
dates, etc. Some tables, or some columns in some tables, 
are optional, depending on the instance category. For 
example, in the NCOS category, all resources have 
capacity 1: the CAPACITY column of the RESOURCE 
table is omitted.  



 
The advantage of such a format is its natural extensibility. 
A researcher can write a reader for NCOS instances and 
then extend it to PM_NCOS instances. Globally, it 
however appeared that the first reader takes long to 
develop. To overcome this drawback, the simplest 
instances are also provided in simpler textual format, but 
then the researcher has a gap to fill to move from these 
simple instances to more complex instances. It is unclear 
how a better solution to this issue could be reached. 

Results 
Once the data sets are distributed, results arrive. It is then 
necessary to decide which results to keep. MaScLib 
currently consists of about 500 instances. Should twenty 
researchers provide results, each with ten variants of a 
given problem-solving method, we get about 100.000 
figures to manage. Either some infrastructure must be built 
to manage these results, or dominated results shall not be 
kept and distributed with the problem set. 
 
For many benchmark problem suites, only the best-known 
lower and upper bounds are maintained on a publicly 
available page. This is indeed the strict minimum. 
However, when the main objective is to test the robustness 
of problem-solving methods, best-known lower and upper 
bounds are clearly insufficient. Indeed, it could be that a 
given problem-solving method M provides a lot of best-
known solutions, but also provides catastrophic solutions 
on a significant number of instances; while another method 
N is not so good at reaching the best-known solutions, but 
is on average much better than method M.  
 
For MaScLib, the following policy is currently adopted: 
 
• The results of a problem-solving method that is proven 

to be among the three best methods on a significant 
subset of instances are systematically kept. 

• The results of any other problem-solving method are 
eliminated unless this elimination would make a best-
known lower or upper bound disappear from the result 
base.  

 
Unfortunately, the outcome of this policy depends on the 
order in which results are received and eliminated, which is 
not really satisfactory. For example, if method M provides 
the best solution for instances A and B but not for instance 
C, method N provides the best solutions for instances A 
and C but not for instance B, and method P provides the 
best solutions for instances B and C but not for instance A, 
either M or N or P can be eliminated. At a given time, ties 
can be broken by looking at the overall robustness of the 
different methods or giving a preference to the methods 
documented in the literature, but in general there is no fully 
satisfactory policy to make decisions in this respect. 

Conclusion 
The development of a public test bed for manufacturing 
planning and scheduling brings a lot of design issues, along 
several dimensions: the content of the test bed, the testing 
protocol, the format of the data, and the management of the 
results obtained.  
 
Even when the objective of the test bed is clearly defined, 
usability and complexity issues along these four 
dimensions are encountered. Academic researchers and 
application developers should discuss these issues, with the 
common objective of improving the benchmark problem 
suites made available to the community and, as a result, the 
relevance of the research conducted toward a better 
resolution of these problems. 
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