
Application of Meta-Tree-Based Distributed Search to the Railway Scheduling
Problem

Montserrat Abril, Miguel A. Salido, Federico Barber
Dpto. Sistemas Informáticos y Computación, Universidad Politécnica de Valencia

Camino de Vera s/n, 46022, Valencia, Spain
{mabril, msalido, fbarber}@dsic.upv.es

Abstract

Many problems of theoretical and practical interest can be
formulated as Constraint Satisfaction Problems (CSPs). Solv-
ing a general CSP is known to be NP-complete; however, dis-
tributed models may take advantage of dividing the problem
into a set of simpler interconnected sub-problems which can
be more easily solved. In this work, we present a distributed
model for solving large-scale CSPs. Our technique carries
out a partition over the constraint network by selection of tree
structures; after partitioning, the sub-CSPs are arranged into
a meta-tree CSP structure that is used as a hierarchy of com-
munication by our distributed algorithm. We have focused
our research on the railway scheduling problem which can be
distributed by tree structures. We show that our distributed
algorithm outperforms well- known centralized algorithms.

keywords: Distributed Constraint Satisfaction Problems,
Tree Partition, Train Scheduling.

Introduction
Many real problems in Artificial Intelligence (AI) as well
as in other areas of computer science and engineering can
be efficiently modelled as Constraint Satisfaction Prob-
lems (CSPs) and solved using constraint programming tech-
niques. Some examples of such problems include: spa-
tial and temporal planning, qualitative and symbolic reason-
ing, diagnosis, decision support, scheduling, hardware de-
sign and verification, real-time systems and robot planning.
Most of the work is focused on general methods for solving
CSPs. However, many of the problems solved by using cen-
tralized algorithms are inherently distributed. Some works
are currently based on distributed CSPs (see special issue of
Artificial Intelligence, Volume 161, 2005).

Furthermore, many researchers are working on graph par-
titioning (Schloegel, Karypis, & Kumar 2003). The main
objective of graph partitioning is to divide the graph into a
set of regions such that each region has roughly the same
number of nodes and the sum of all edges connecting differ-
ent regions is minimized. Researchers are almost always in-
terested in the size of nodes or edges, although a few studies
have been made on the graph structure of the sub-problems
induced by the partition (Miller 1986). For instance, one

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

study seeks a node-separator whose induced graph is hamil-
tonian). Graph partitioning can also be applied to constraint
satisfaction problems. Thus, we can use graph partition-
ing when dealing with large-scale CSPs to distribute the
problem into a set of sub-CSPs. For instance, we can di-
vide a CSP into several subCSPs so that constraints among
variables of each subCSP are minimized (Salido & Barber
2006). Otherwise, a domain-dependent partition can be used
(see Figure 7). This requires a deeper analysis of the prob-
lem to be solved. In this paper, we show that a domain-
dependent partition obtains a more adequate distribution so
that a higher efficiency is obtained.

In this paper, we present two techniques for structuring
and solving binary CSPs. To this end, the binary CSP is
previously organized into a meta-tree CSP structure so that
the original constraint graph is partitioned into trees that
represent sub-problems. Thus, the search algorithm carries
out the search in each node in linear time (Freuder 1982),
(Dechter & Pearl 1987).

Our research is also focused on the railway scheduling
problem. Railway traffic has increased considerably, which
has created the need to optimize the use of railway infras-
tructures. This is, however, a hard and difficult task. Our aim
is to model the railway scheduling problem as a Constraint
Satisfaction Problem (CSP) and solve it using a distributed
CSP solver. Due to the topological properties of the railway
scheduling problem, the resultant CSP can be distributed in
semi-independent sub-problems so that the solution can be
solved easier.

In the following section, we summarize some definitions
about CSPs. A tree partition method is presented in sec-
tion 3. Our distributed algorithm for solving meta-tree CSP
structures is presented in section 4. In section 5 we describe
the railway scheduling problem. An evaluation of our meth-
ods over real railway networks is presented in section 6. Fi-
nally, we summarizes our conclusions in section 7.

Centralized, Distributed and Partitionable
CSPs

In this section, we present some basic definitions related
to CSPs, which will be convenient for our purposes and
will unify works from the constraint satisfaction community.
Then, we present three ways for solving a CSP: as a central-

ized problem, as a partitionable problem and as a distributed
problem.

A CSP consists of: a set of variables X =
{x1, x2, ..., xn}; each variable xi ∈ X has a set Di of pos-
sible values (its domain); a finite collection of constraints
C = {c1, c2, ..., cp} that restricts the values that the vari-
ables can simultaneously take.

A solution to a CSP is an assignment of values to all the
variables so that all constraints are satisfied; a problem with
a solution is termed satisfiable or consistent.

A binary constraint network is a network in which every
constraint subset involves at most two variables. In this case,
the network can be associated with a constraint graph, where
each node represents a variable and the arcs connect nodes
whose variables are explicitly constrained (Dechter 1992).

A meta-tree CSP structure is a tree whose nodes are com-
posed by trees. Thus, we will refer to the main tree as meta-
tree CSP structure and to each individual tree as single-
tree. We will define each node of the meta-tree CSP struc-
ture as meta-node and each individual and atomic node of
the trees assingle-node. It can be deduced that each meta-
node corresponds to a single-tree. Each constraint between
two single-nodes of different meta-nodes is called inter-
constraint. Each constraint between two single-nodes of the
same meta-node is called intra-constraint.

Partition : A partition of a set C is a set of disjoint subsets
of C whose union is C. The subsets are called the blocks of
the partition.

Distributed CSP: A distributed CSP (DCSP) is a CSP in
which the variables and constraints are distributed among
automated agents (Yokoo & Hirayama 2000).

Each agent has some variables and attempts to determine
their values. However, there are inter-constraints and the
value assignment must also satisfy them. In our model, there
are k agents 1, 2, ..., k. Each agent knows the set of con-
straints and the domains of variables involved in these con-
straints.

Partition of CSPs
There are many ways to solve a CSP. However, these prob-
lems can be classified into three categories: centralized
problems, distributed problems, and partitionable problems.

• A CSP is a centralized CSP when there are no pri-
vacy/security rules between parts of the problem, and all
knowledge about the problem can be gathered into one
process. It is commonly recognized that centralized CSPs
must be solved by centralized CSP solvers. Many prob-
lems are represented as typical examples to be modelled
as a centralized CSP and solved using constraint program-
ming techniques. Some examples are: sudoku, n-queens,
map coloring, etc.

• A CSP is a distributed CSP when the variables, domains
and constraints of the underlying network are distributed
among agents. This distribution is carried out due to
many factors: constraints may be strategic information

that should not be revealed to competitors, or even to a
central authority; a failure of one agent can be less critical
and other agents might be able to find a solution without
the failed agent. Examples of such systems are sensor net-
works, meeting scheduling, web-based applications, etc.

• A CSP is a partitionable CSP when the global prob-
lem can be divided into smaller problems (sub-problems)
which must be coordinated to find the solution to the
global problem. For example, the search space of a CSP
can be divided into several regions, and a solution is found
by using parallel computing.

Given these three categories, we can conclude that a dis-
tributed CSP can not be solved by centralized techniques.
However, can a centralized CSP be solved by distributed
techniques? The answer is ’yes’ if the CSP is divided previ-
ously.

Real problems usually imply models with a great num-
ber of variables and constraints, causing dense networks of
inter-relations. Problems of this kind can be handled as a
whole only at overwhelming computational cost. Thus, it
could be an advantage to decompose problems of this kind
into several simpler interconnected sub-problems which can
be more easily solved.

In the following example, we show that a centralized CSP
could be decomposed into several sub-problems in order to
obtain simpler sub-CSPs. In this way, we can apply a dis-
tributed technique to solve the decomposed CSP.

The map coloring problem is a typically centralized prob-
lem. The goal of a map coloring problem is to color a map so
that regions sharing a common border have different colors.
Let’s suppose that each country of Europe must be colored.
Figure 1 (1) shows a colored portion of Europe. This prob-
lem can be solved by a centralized CSP solver. However, if
the problem is to color each region of each country of Eu-
rope (Spain, Figure 1(3); France, Figure 1(4)), it is easy to
see that the problem can be partitioned into a set of sub-
problems, grouped by clusters. This problem can be solved
as a distributed problem, even when the problem is not in-
herently distributed.

A map coloring problem can be solved by first converting
the map into a graph where each region is a vertex and an
edge connects two vertices if and only if the corresponding
regions share a border. In our problem of coloring the re-
gions of each country of Europe, it can be observed that the
corresponding graph maintains clusters representing each
country (Spain, Figure 1(3); France, Figure 1(4)). Thus, the
problem can be solved in a distributed way.

Why Tree Partition?
As Rina Dechter states in (Dechter 1992), a problem is con-
sidered easy when it admits a solution in polynomial time.
In the context of constraint networks, a problem is easy if
an algorithm like backtracking can solve it in a backtrack-
free manner, i.e., without dead-ends, thus producing a so-
lution in linear time with regard to the number of variables
and constraints. Theoretical researches has identified topo-
logical features that determine this level of consistency and

(1) (2)

(3) (4)

Figure 1: map coloring of Europe.

has yielded tractable algorithms for transforming some net-
works into backtrack-free representations. The following
paragraphs present a summary of this theory.

The theory is centered on a graphical parameter called
width, and the definitions are relative to the primal constraint
graph. An ordered (primal) constraint graph is defined as
one in which the nodes are linearly ordered to reflect the se-
quence of variable assignments executed by the backtrack-
ing algorithm. The width of a node is the number of arcs that
connect that node to previous ones, the width of an ordering
is the maximum width of all nodes, and the width of a graph
is the minimum width of all orderings of that graph. It is
known that only trees are width-one graphs (Freuder 1982).
An ordered constraint graph is backtrack-free if the level of
directional strong consistency along this order is greater than
the width of the ordered graph. Thus, if the graph has width-
one (i.e., it is a tree), a directional two-consistency is suffi-
cient (Dechter 1992) to solve the problem in linear time.

How to Convert a binary CSP into a Meta-Tree
CSP Structure
Any binary CSP can be translated into a meta-tree CSP
structure. However, there are many ways to divide a graph
into trees. Depending on user requirements, it may be desir-
able to obtain balanced single-trees, that is, each single-tree
maintains roughly the same number of single-nodes; or it
may be desirable to obtains single-trees in such a way that
the number of edges connecting two single-trees are mini-
mized.

Due to the complexity of finding the best partition, our
technique finds an unbalanced tree partition in polynomial
time (n2 in the worst case, where n is the number of vari-
ables). It divides the problem into an undefined number of
trees.

The TreePartition algorithm (Algorithm 1) divides the

network graph G into k sub-graphs which are trees. The
nodes and edges of graph G are, respectively, the variables
and constraints of the CSP. TreePartition randomly selects
a root node that does not belong to another sub-graph, then
the SearchTree function constructs a tree. This function re-
cursively carries out a Depth First Search in graph G. The
SearchTree function selects a new node i which is connected
with VarNode and whose inclusion in the present Tree does
not introduce a cycle, that is, node i is not connected with
another node of the present Tree. Node i is marked as vis-
ited; it indicates that this node already belongs to one tree.
Tree construction finishes when either there are no unvisited
nodes or the remainder nodes introduce cycles in the present
tree. The TreePartition algorithm finishes when all nodes of
G belong to any sub-graph.

Algorithm TreePartition(G)

Input: Graph G, originally all nodes are unvisited.
Start meta-node v of G

Output: Tree partition

Tree partition=Ø;
while G6= Ø do

Tree=Ø;
RootNode = selectNode(G);
insert RootNode into Tree;
mark RootNode as visited;
SearchTree(G,RootNode,Tree);
insert Tree into Tree partition;

end
end
function SearchTree(G, VarNode, Tree)

forall i adjacent(1) to VarNode ∧ i unvisited do
if NoCycle(i,Tree) then

insert i into Tree;
mark i as visited;
SearchTree(G,i,Tree);

end
end
/* (1) two single-nodes are

adjacent if at least one
constraint exists between them.
*/

Algorithm 1: TreePartition Algorithm.

The next step is to build the meta-tree CSP structure with
k meta-nodes that will be studied by agents. This meta-tree
CSP structure is used as a hierarchy to communicate mes-
sages between meta-nodes. The meta-tree CSP structure is
built using Algorithm 2. The nodes and edges of graph G
are, respectively, the meta-nodes and inter-constraints ob-
tained after the CSP partition. The root meta-node is ob-
tained by selecting the most constrained meta-node. The
MetaTreeCSPStructure algorithm then simply puts meta-
node v into the meta-tree CSP structure (process(v)); it ini-
tializes a set of markers to indicate which vertices have
been visited; it chooses a new meta-node i and then calls
MetaTreeCSPStructure(G,i) recursively. If a meta-node has
several adjacent meta-nodes, it would be equally correct to

choose them in any order, but it is very important to delay
the test for whether a meta-node is visited until the recursive
calls for previous meta-nodes are finished.

Algorithm MetaTreeCSPStructure(G,v)

Input: Graph G, originally all nodes are unvisited.
Start meta-node v of G

Output: meta-tree CSP structure

process(v);
mark v as visited;
forall meta-node i adjacent(1) to v unvisited do

MetaTreeCSPStructure(G,i);
end
/* (1) meta-node i is adjacent to

meta-node v if at least one
inter-constraint exists between i
and v. */

Algorithm 2: MetaTreeCSPStructure Algorithm.

Our aim is to solve CSPs by dividing the constraint graph
by means of trees. Figure 3-1 shows a simple example of
CSP. In Figure 3-2, this CSP has been divided into several
trees and has been translated into a meta-tree CSP structure.

DFSTreeSearch Algorithm (DTS)
Our algorithm, called DFSTreeSearch (DTS), can be con-
sidered as a distributed and asynchronous algorithm. In
the specialized literature, there are many works about dis-
tributed CSPs. In (Yokoo & Hirayama 2000), Yokoo et
al. present a formalization and algorithms for solving dis-
tributed CSPs. These algorithms can be classified as central-
ized methods, synchronous backtracking or asynchronous
backtracking (Yokoo & Hirayama 2000).

DTS is committed to solving the meta-tree CSP struc-
ture in a Depth-First Search Tree (DFS Tree) where the root
meta-node is composed of the most constrained single-tree
(in the sense that this single-tree maintains a higher number
of single-nodes). DFS trees have already been investigated
as a means to boost search (Decher 2003). Due to the rela-
tive independence of nodes lying in different branches of the
DFS tree, it is possible to perform search in parallel on these
independent branches.

Once the variables are divided and arranged, the problem
can be considered as a distributed CSP, where a group of
agents manages each single-tree with its variables (single-
nodes) and its constraints (intra-constraints). Each agent
is in charge of solving its own single-tree by means of the
tree-solving algorithm defined in (Decher 2003). Each sub-
problem is composed of its CSP subject to the variable as-
signment generated by the ancestor agents in the meta-tree
CSP structure.

Thus, the root agent works on its sub-problem (root meta-
node). If the root agent finds a solution, then it sends the
consistent partial state to its children agents in the meta-tree
CSP structure, and all children work concurrently to solve
their specific sub-problems knowing the consistent partial
states assigned by the root agent. When a child agent finds a
consistent partial state, it again sends this partial state to its

Problem Solutions

Tree-

Decomposition c(1): block1

c(2):block2

c(3):block3

c(4):block4

Constraint

Partition

Meta-Tree Order

Time steps

Agents

c(1)

a1

c(2)

a2

c(3)

a3

c(4)

a4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ...

a1

a2

a3

a4

s11 + s4...

s11+s21+s3...

N
o
g
o
o
d

S
to
p

s12+s22

s12 + s41

s12+s22+s3...

S
o
lu
ti
o
n

N
o
g
o
o
d

s12+s23

s12+s23+s31 S
o
lu
ti
o
n
S
o
lu
ti
o
n

P
ro
b
le
m
 S
o
lu
ti
o
ns11 s12

s11+s21

24 25

Figure 2: Execution of DFSTreeSearch Algorithm.

children and so on. Finally, leaf agents try to find a solution
to their own sub-problems. If each leaf agent finds a consis-
tent partial state, it sends an OK message to its parent agent.
When all leaf agents answer with OK messages to their par-
ents, a solution to the entire problem is found. When a child
agent does not find a solution, it sends a Nogood message
to the parent agent. The Nogood message contains the vari-
ables that empty the variable domains of the child agent.
When the parent agent receives a Nogood message, it stops
the search of the children and tries to find a new solution
taking into account the Nogood information and so on. If a
parent agent finds a new solution, it will start the same pro-
cess again sending this new solution to its children. Each
agent works in the same way with its children in the meta-
tree CSP structure. However, if the root agent does not find
a solution, then DTS returns no solution found.

Figure 2 shows our technique for partitioning a CSP into a
meta-tree CSP structure. Then, DTS is carried out. Once the
CSP is partitioned, the root agent (a1) starts the search pro-
cess finding a partial solution. It sends this partial solution to
its children. Agents that are brothers are committed to con-
currently finding the partial solutions of their sub-problems.
Each agent sends the partial problem solutions to its children
agents. A problem solution is found when all leaf agents find
their partial solution. For example, (state s12 + s41) + (state
s12 + s23 + s31) is a problem solution. The concurrence
can be seen in Figure 2 in Time step 4 in which agents a2

and a4 are concurrently working. agent a4 sends a Nogood
message to its parent (agent a1) in step 9 because it does
not find a partial solution. Then, agent a1 stops the search
process of all its children and it finds a new partial solution
which is sent to its children. Now, agent a4 finds its partial
solution, and agent a2 works with its child, agent a3, to find
their partial problem solution. When agent a3 finds its par-
tial solution, the global problem will be found. This happens
in Time step 25.

Example
Figure 3 shows an example to analyze the behavior of DTS.

First the constraint network of Figure 3(1) is partitioned
into three trees and the DFS tree is built (Figure 3(2)). Agent
a finds its first partial solution (X1 = 1, X2 = 1) and sends
it to its children: agents b and c (see Figure 3(3)). This is a
good partial solution for agent c (Figure 3(4)); however this
partial solution empties the X3 variable domain. Thus, agent
b sends a Nogood message to its father (Nogood (X1 = 1))
(Figure 3(5)). Then, agent a processes the Nogood mes-
sage, prunes its search space, finds a new partial solution
(X1 = 2, X2 = 2) and sends it to its children (Figure 3(6)).
At this point in the process, agent c sends a Nogood mes-
sage to its father (Nogood (X1 = 2)) because X5 variable
domain is empty (Figure 3(7)). Agent a stops the search of
agent b (Figure 3(8)) and then processes the Nogood mes-
sage, prunes its search space, finds a new partial solution
(X1 = 3, X2 = 3) and sends it to its children (Figure 3(9)).
Since this last partial solution is good for both children, they
respond with an OK message and the search ends (Figure
3(10)), returning the solution presented in Figure 3(11).

Figure 3: Example of DTS execution.

Railway Scheduling Problem
Train timetabling is a difficult and time-consuming task, par-
ticularly in the case of real networks where the number of
constraints and the complexity of constraints grow drasti-
cally. A feasible train timetable should specify the departure
and arrival time of each train to each location of its jour-
ney, in such a way that the line capacity and other opera-
tional constraints are taken into account. Traditionally, train
timetables are generated manually by drawing trains on the
time-distance graph called a running-map. The train sched-
ule is generated from a given starting time and is manually

adjusted so that all constraints are met. High priority trains
are usually placed first followed by lower priority trains. It
can take many days to develop train timetables for a line,
and the process usually stops once a feasible timetable has
been found. The resulting plan of this procedure may be far
from optimal.

A sample of a running map is shown in Figure 4, where
several train crossings can be observed. A running map
contains information regarding railway topology (stations,
tracks, distances between stations, traffic control features,
etc.) and the schedules of the trains that use this topology
(arrival and departure times of trains at each station, fre-
quency, stops, crossings, etc,). The names of the stations are
presented on the left side of Figure 4, and the vertical line
represents the number of tracks between stations (one-way
or two-way). The horizontal line represents the time.

INFORM

Stations

Halts

Time

Paths

Tracks

Figure 4: Example of a running-map

The literature of the 1960s, 1970s, and 1980s related
to rail optimization was relatively limited. Compared to
the airline and bus industries, optimization was generally
overlooked in favor of simulation or heuristic-based meth-
ods. However, (Cordeau, Toth, & Vigo 1998) point out
greater competition, privatization, deregulation, and increas-
ing computer speed as reasons for the more prevalent use of
optimization techniques in the railway industry. Our review
of the methods and models that have been published indi-
cates that the majority of authors use models that are based
on the Periodic Event Scheduling Problem (PESP) intro-
duced by (Serafini & Ukovich 1989). The PESP considers
the problem of scheduling as a set of periodically recurring
events under periodic time-window constraints. The model
generates disjunctive constraints that may cause the expo-
nential growth of the computational complexity of the prob-
lem depending on its size. (Schrijver & Steenbeek 1994)
have developed CADANS, a constraint programming- based
algorithm to find a feasible timetable for a set of PESP
constraints. The scenario considered by this tool is differ-
ent from the scenario that we have been used in this work;
therefore, the results are not easily comparable. The train
scheduling problem can also be modeled as a special case of
the job-shop scheduling problem ((Silva de Oliveira 2001),
(Walker & Ryan 2005)), where train trips are considered

jobs that are scheduled on tracks that are regarded as re-
sources.

Our goal is to model the railway scheduling problem as a
Constraint Satisfaction Problem (CSP) and to solve it using
constraint programming techniques. However, due to the
huge number of variables and constraints that this problem
generates, a distributed model is developed to distribute the
resultant CSP into semi-independent sub-problems so that
the solution can be found efficiently.

Variables and Constraints in the Railway
Scheduling Problem
The variables of the railway scheduling problem are the ar-
rival and departure times of trains at stations. The variables
domain is the time with a granularity of minutes. There are
three groups of scheduling rules in our railway scheduling
problem: traffic rules, user requirements rules and topologi-
cal rules. A valid running map must satisfy the above rules.
These scheduling rules can be modelled using the following
constraints, where variable TAi,k represents that train i ar-
rives at station k and the variable TDi,k means that train i
departs from station k:

1. Traffic rules guarantee crossing and overtaking opera-
tions. We assume two trains (i and j) going in opposite
directions between stations k and k + 1. The main con-
straints to take into account are:
• Reception time constraint. There exists a given time to

detour a train back from the main track so that crossing
or overtaking can be performed (RecT).

(TAi,k + RecTi < TAj,k) ∨ (TAj,k + RecTj < TAi,k)

• Expedition time constraint. There exists a given time
to put a train back on the main track so that crossing or
overtaking can be performed (ExpT).

(TDi,k + ExpTi < TDj,k) ∨ (TDj,k + expTj < TDi,k)

• Crossing constraint: Any two trains going in opposite
directions must not simultaneously use the same one-
way track.
(TDi,k +Ti,(k k+1) < TDj,k+1)∧(TDi,k < TDj,k+1 +Tj,(k+1 k))

∨

(TDi,k+Ti,(k k+1) > TDj,k+1)∧(TDi,k > (TDj,k+1+Tj,(k+1 k))

• Overtaking constraint: Two trains (i and s) going at
different speeds in the same direction can only overtake
each other at stations.
(TDi,k < TDs,k) ∧ (TDi,k + Ti,(k k+1) < TDs,k + Ts,(k k+1))

∨

(TDi,k > TDj,k) ∧ (TDi,k + Ti,(k k+1) > (TDs,k + Ts,(k k+1))

2. User Requirements: The main constraints due to user
requirements are:

• Type and Number of trains going in each direction to
be scheduled.

• Path of trains: Locations used and Stop time for com-
mercial purposes in each direction.

TDi,k = TAi,k + StopTimei,k

Reception Expedition

Incoming train

Station

Detoured train

Expedition Time

Reception Time

 Time

Crossing

Figure 5: Constraints related to crossing and overtaking in
stations

• Scheduling frequency. Train departure must satisfy
frequency requirements in both directions. It could be
a fixed time (1) or a time interval (Freq ± δ) (2). Fre-
quency is a very tight constraint and is only sometimes
required.
(1) TDi+1,k = TDi,k + Freq

(2) (TDi,k + Freq − δ) ≤ TDi+1,k ≤ (TDi,k + Freq + δ)

• Departure interval for the departure of the first trains
going in both the up and down directions.

StartTimei < TDi,1 < EndTimei

3. Railway infrastructure topology and type of trains to
be scheduled give rise to other constraints to be taken into
account. Some of them are:
• Number of tracks in stations (to perform technical

and/or commercial operations) and the number of
tracks between two locations (one-way or two-way).

• Time constraints, between each two contiguous sta-
tions (Ti,(k k+1)).

TAi,k+1 − TDi,k = Ti,(k k+1)

Figure 6 shows the set of variables of two trains going
in opposite directions between stations A and E. After
studying the problem, we have detected an advantageous
tree partition of the railway scheduling problem. In Figure
6, the edges among two variables represent time constraints
(TDi,k- TAi,k+1) and stop time constraints (TAi,k- TDi,k)
respectively; these constraints make up train paths and they
could be private information of railway operators. Figure 7
shows a clear tree partition of the railway scheduling prob-
lem where each sub-CSP has all variables of only one train
and the respective intra-constraints are time constraints and
time stop constraints that are usually fixed by railway op-
erators. The inter-constraints are the traffic rules that are
usually controlled by infrastructure managers.

Evaluation
In this section, we carry out an evaluation between DTS
and a centralized CSP solver. To this end, we have used
a well-known centralized CSP solver called Forward Check-
ing (FC). The classical binary version of FC ((Haralick & G.
1980)) has a prohibitive computational cost for the type of
problems evaluated in this section (a simple railway schedul-
ing problem with 4 trains could not be solved after 1 day of
execution); that is why we use the full path consistency For-
ward Checking algorithm (FCPath)1. This algorithm per-

1FCPath were obtained from Van Beek page. It can be found
in: http://ai.uwaterloo.ca/ vanbeek/software/software.html

Figure 6: Variables of two opposite trains.

Figure 7: Train-based tree partition.

forms full path consistency on future variables whenever the
current variable is instantiated.

This empirical evaluation of the railway scheduling prob-
lem was carried out over a real railway infrastructure that
joins two important Spanish cities (La Coruna and Vigo).
The journey between these two cities is currently divided by
40 stations. In our empirical evaluation, each set of random
instances was defined by the 3-tuple < n; s; f >, where n
was the number of periodic trains in each direction, s the
number of stations, and f the frequency (in minutes). The
problems were randomly generated by modifying these pa-
rameters. Usually, increasing the number of trains involves
a CSP with a greater number of variables; increasing the
number of stations involves a CSP with a greater number of
variables and a greater domain size; and decreasing the fre-
quency involves increasing the problem tightness because
the number of conflicts between trains is greater.

In this evaluation, we compare the running time and con-
current constraint checks (CCC) ((Meisels et al. 2002))
of DTS with a well-known centralized algorithm: FCPath.
DTS is executed over two different tree partitions: random
partition is obtained using the TreePartition algorithm (Al-
gorithm 1), which is a general tree partition method; train
partition is a domain-dependent partition, which has been
illustrated in Figure 7. It must be taken into account that
both types of partitions roughly generate the same number
of sub-problems and inter-constraints.

Figures 8 and 9 show the behaviors of DTS and FCPath
in several instances of n according to the tuple < n, 5, 60 >.
The number of trains (n) was increased from 1 to 20 trains
in each direction. It must be taken into account that both

0,001

0,01

0,1

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of Trains

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 8: Running Times in problems < n, 5, 60 >.

1000

10000

100000

1000000

10000000

100000000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of trains
C

C
C

TrainTrees RandomTrees FCPath

Figure 9: Concurrent constraint checks in problems
< n, 5, 60 >.

1

10

100

1000

10000

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Number of Trains

N
u

m
b

er
 o

f
M

es
sa

g
es

RandomTrees TrainTrees

Figure 10: Message exchanges in problems < n, 5, 60 >.

graphs maintain a log10 scale. Figures 8 and 9 show that
DTS outperforms the FCPath algorithm, both random par-
tition and train partition, in all instances. Figure 8 shows
that DTS with train partition always has smaller running
times than DTS with random partition. However, Figure 9
shows that DTS with random partition sometimes has fewer
CCC than DTS with train partition. The two last assertions
seem to be contradictory, but the explanation is in Figure
10: DTS with train partition exchanges fewer messages than
DTS with random partition; thus, train partition saves a lot
of running time. This is due to train partition involves better
agent coordination.

0,001

0,01

0,1

1

10

100

1000

5 10 15 20

Number of Stations

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 11: Running Times in problems < 4, s, 60 >.

0,001

0,01

0,1

1

10

100

15 30 45 60

Frequency (Minutes)

T
im

e
(S

ec
o

n
d

s)

TrainTrees RandomTrees FCPath

Figure 12: Running Times in problems < 4, 10, f >.

Figure 11 show the behaviors of DTS and FCPath in sev-
eral instances of s according to the tuple < 4, s, 60 >, where
the number of stations (s) was increased from 5 to 20. It
can be observed that DTS with train partition has a better
behavior than DTS with random partition and FCPath. In
Figure 12, we evaluate the behavior of the algorithms with
different frequencies according to the tuple < 4, 10, f >,
where frequency was increased from 15 to 60 minutes. It
can be observed that due to the problem instances maintain
the same number of variables and domain size, DTS with
train partition and FCPath maintain homogeneous behav-
iors. In general, both graphs corroborate the good behavior
of the DTS algorithm, particularly with train partition.

Conclusions
We have presented two techniques for structuring and solv-
ing binary CSPs. The first one translates, in polynomial
time, the original binary graph into a meta-tree CSP struc-
ture, where each node in the meta-tree CSP structure is a
tree. The second technique is a distributed algorithm (DTS)
for solving the resultant meta-tree CSP structure. DTS ex-
ploits the linear complexity to solve each tree and minimizes
the storage of Nogoods. These techniques have been ap-

plied to the railway scheduling problem. The evaluation
shows that general distributed models have a better behav-
ior than the centralized model, but domain-dependent dis-
tributed models are more efficient than general ones. Thus,
this technique may be appropriate for solving centralized
problems that can be divided in smaller sub-problems.

References
Cordeau, J.; Toth, P.; and Vigo, D. 1998. A survey of op-
timization models for train routing and scheduling. Trans-
portation Science 32:380–446.
Decher, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Dechter, R., and Pearl, J. 1987. Network-based heuristics
for constraint satisfaction problems. Artificial Intelligence
34:1–38.
Dechter, R. 1992. Constraint networks (survey). Encyclo-
pedia Artificial Intelligence 276–285.
Freuder, E. 1982. A sufficient condition for backtrack-free
search. Journal of the ACM 29:24–32.
Haralick, R., and G., E. 1980. Increasing tree efficiency
for constraint satisfaction problems. Artificial Intelligence
14:263–314.
Meisels, A.; Kaplansky, E.; Razgon, I.; and Zivan, R. 2002.
Comparing performance of distributed constraint process-
ing algorithms. In Proc. 4th Workshop on Distributed Con-
straint Reasoning.
Miller, G. 1986. Finding small simple cycle separators
for 2-connected planar graphs. Journal of Computer and
System Sciences 32:265–279.
Salido, M., and Barber, F. 2006. Distributed csps by
graph partitioning. Applied Mathematics and Computation
183:491–498.
Schloegel, K.; Karypis, G.; and Kumar, V. 2003. Graph
partitioning for high-performance scientific simulations.
Sourcebook of parallel computing 491–541.
Schrijver, A., and Steenbeek, A. 1994. Timetable construc-
tion for railned. Technical Report, CWI, Amsterdam, The
Netherlands.
Serafini, P., and Ukovich, W. 1989. A mathematical model
for periodic scheduling problems. SIAM Journal on Dis-
crete Mathematics 550–581.
Silva de Oliveira, E. 2001. Solving single-track railway
scheduling problem using constraint programming. Phd
Thesis. Univ. of Leeds, School of Computing.
Walker, C., S. J., and Ryan, D. 2005. Simultaneous dis-
ruption recovery of a train timetable and crew roster in real
time. Comput. Oper. Res 2077–2094.
Yokoo, M., and Hirayama, K. 2000. Algorithms for dis-
tributed constraint satisfaction: A review. Autonomous
Agents and Multi-Agent Systems 3:185–207.

