
Constraint-Based Modelling of Discrete Event Dynamic Systems

Gérard Verfaillie and Cédric Pralet and Michel Lemaître
ONERA, 2 av. Édouard Belin, BP 74025, F-31055 Toulouse Cédex 4, France

{Michel.Lemaitre,Cedric.Pralet,Gerard.Verfaillie}@onera.fr

Abstract
Numerous frameworks dedicated to the modelling of discrete
event dynamic systems have been proposed to deal with pro-
gramming, simulation, validation, situation tracking, or de-
cision tasks (automata, Petri nets, Markov chains, temporal
logic, situation calculus, STRIPS . . .). All these frameworks
present significant similarities, but none offers the flexibility
of more generic frameworks such as logics or constraints.
In this article, we propose a generic framework for the mod-
elling of discrete event dynamic systems, whose main com-
ponents are state and event timelines and constraints on these
timelines. Although any kind of constraint can be defined
on timelines, we focus on some useful ones: pure temporal
constraints, instantaneous state and event constraints, instan-
taneous and non instantaneous transition constraints.
Finally we show how the proposed framework subsumes
existing apparently different frameworks such as automata,
Petri nets, or classical frameworks used in planning and
scheduling, while offering the great flexibility of a constraint-
based modelling.

Introduction
The goal of this article is to propose a generic constraint-
based framework for the modelling of discrete event dy-
namic systems, that is of systems whose state evolves over
time via instantaneous changes possibly due to instanta-
neous events.

Numerous frameworks exist to model such systems. One
can cite automata, synchronous languages (Benveniste et
al. 2003) which allow automata to be compactly described,
and temporal logics (Pnueli 1977) which allow properties
of automata to be compactly described, but also Petri nets,
Markov chains and Markov Decision Processes (Puterman
1994) which both allow stochastic changes to be described,
the STRIPS framework (Fikes & Nilsson 1971) and the situ-
ation calculus (Levesque et al. 1997) both used in planning,
and the usual models used in scheduling.

Although all these frameworks present significant simi-
larities (discrete instants of transition, more or less compact
representation of states and transitions), comparing them is
somewhat difficult, unless translating all of them into the
most basic ones and less compact ones: automata or Markov
chains.

On the other hand, although constraint-based modelling
is known to combine compactness and flexibility in terms

of modelling with efficiency in terms of problem solving,
it remains mainly used to deal with static problems, that
is problems that do not involve time, despite some no-
table exceptions: mainly the scheduling problems (see (Bap-
tiste, Pape, & Nuijten 2001)) and to a certain extent plan-
ning problems (see for example (Kautz & Selman 1992;
van Beek & Chen 1999)). With only a few exceptions (see
for example (Delzanno & Podelski 2001)), it is not used to
deal with validation problems on dynamic systems or with
situation tracking problems, such as failure diagnosis. We
think that such a situation is mainly due to the absence of a
generic constraint-based framework, dedicated to the mod-
elling of discrete event dynamic systems and indifferently
usable for simulation, validation, situation tracking, or deci-
sion tasks.

This is such a framework we propose in this article. It
is based on the assumption of a continuous time and of dis-
crete instants of event or change, and on the notion of time-
lines: state timelines to represent the way the state of the
system evolves over time and event timelines to represent the
way events occur. These timelines can be compactly rep-
resented via variables: temporal variables to represent the
instants of change or event, and atemporal variables to rep-
resent values at these instants. Using the great flexibility of
a constraint-based modelling, any kind of constraint can be
defined on these timelines via constraints on temporal and
atemporal variables. However, among them, pure tempo-
ral, instantaneous state, instantaneous event, instantaneous
transition, and non instantaneous transition constraints are
a priori very useful and would deserve to be particularly
studied.

The framework proposed in this article is inspired but dif-
ferent from works carried out at the frontier between plan-
ning and scheduling problems, where the notion of time-
line is used to represent the way state and resources evolve
over time and to reason on time, state, and resources (La-
borie & Ghallab 1995; Muscettola 1994; Ghallab 1996;
Muscettola et al. 1998; Barták 1999; Frank & Jónsson
2003).

Section Modelling Assumptions introduces basic as-
sumptions related to time, states, and events. Section Time-
lines introduces the timeline-based representation, whereas
Section Constraint networks on timelines defines what is
a constraint network on timelines (CNT) and Section Use-

ful types of constraint focuses on some a priori very use-
ful types of constraint. In section Subsumed frameworks,
we show how the proposed framework subsumes automata,
Petri nets and classical frameworks used in planning and
scheduling. Section What remains to be done concludes
with the remaining work and some possible extensions.

This article focuses on modelling issues and says
nothing about algorithmic issues (constraint propagation,
search, . . .), which will be the subject of future studies and
articles. We do that because we think that the first ob-
stacle, and perhaps the main one, to the systematic use of
constraint-based modelling and reasoning in the context of
discrete event dynamic systems is the modelling question.

Note that this work has nothing to do with the works on
dynamic CSPs (Verfaillie & Jussien 2005). Dynamic CSPs
aim at dealing with dynamic models, that is with changes
which may occur in CSP models. In this work, we want
to deal with static models of dynamic systems, that is with
static models which include the system dynamics.

Modelling Assumptions
Time
We want to reason on instants, on the order between them,
but also on their values. These values are assumed to belong
to a continuous set. This is why we use R, with the natural
order over reals, to model time.

States and State Changes
States We assume that the state of a system can be mod-
elled using a finite set of state variables representing the at-
tributes of the state of this system. With each state variable,
is associated a domain of values which can be finite or in-
finite, continuous or discrete, symbolic or numeric. In such
conditions, the state of the system at any time is modelled by
an assignment to each state variable of a value in its domain.

It must be noted that state variables can be used to repre-
sent passive attributes of the state (such as, for a robot, its
position or its available level of energy), as well as active
ones (such as, still for a robot, the mode of an observation
instrument or the fact that the robot is currently moving in
some way). In other words, state variables can be used to
represent what we usually refer to as the state of the system
(position, energy level, . . .), as well as what we usually refer
to as actions, when they are not instantaneous (an observa-
tion, a movement, . . .).

State Changes We assume that the state of a system can
change via instantaneous changes and only this way. Con-
tinuous changes cannot be hence precisely modelled and
only approximated via a sequence of instantaneous changes.
In such conditions, a change in the state of the system is
modelled by an instantaneous simultaneous change in the as-
signment of a non empty subset of the state variables. More-
over, we adopt the convention that, when the assignment of
a state variable v changes at time t from value val to value
val′, v is assigned value val before t, t excluded, and value

val′ after t, t included.1
State changes can occur at any time, but we assume that

the instants at which they occur form a discrete subset of
R. Consequently, the assignment of a state variable remains
constant from an instant t of change to the next instant t′ > t
of change, that is equal to the value it took at t over the semi-
closed interval [t, t′[(see Figure 1).

v

t t′

val
val′′

val′

Figure 1: State variable over time

Events and Event Occurrences
Events The same way we assumed that the state of a sys-
tem can be modelled using a finite set of state variables, we
assume that the events that may occur can be modelled us-
ing a finite set of event variables. With each event variable,
is associated a domain of values which can be finite or in-
finite, continuous or discrete, symbolic or numeric. At this
domain, we systematically add a value nothing (⊥) to rep-
resent the absence of value. In such conditions, at any time,
the set of events that are present is modelled by an assign-
ment to each event variable of a value in its domain, possibly
equal to ⊥.

It is for example possible to associate an event variable
with each type of event, with its value pointing out its con-
tent and the value⊥ pointing out the absence of event of this
type.

Event Occurrences We assume that events are instanta-
neous phenomena. In such conditions, an event occurrence
is modelled by an instantaneous simultaneous assignment of
a value different from ⊥ to a non empty subset of the event
variables.

Events can occur at any time but, as with state changes,
we assume that the instants at which they occur form a dis-
crete subset of R. Consequently, the assignment of an event
variable remains equal to⊥ between two successive instants
of event t and t′ > t, t and t′ excluded, that is on the open
interval]t, t′[(see Figure 2).

State Changes and Event Occurrences
No assumption is a priori made about any correlation or
causality relation between state changes and event occur-
rences. State changes and event occurrences can be simulta-
neous. State changes can occur without any event and events
without any state change.

1This convention, used for example in synchronous languages,
is very useful to model instantaneous events which lead to instanta-
neous changes at the same time, for example a failure which leads
instantaneously a system to a given failure mode.

v

t t′

val

val′

⊥

Figure 2: Event variable over time

Timelines
In this section, we show how timelines can be used to repre-
sent compactly the way state and event variables evolve over
time.

Definition 1 A timeline tl is defined as a quintuple
〈v, d, I, tI , vI〉 where v is a state or event variable, d its
domain of values, I a sequence of instants, tI a sequence
of temporal variables, and vI a sequence of atemporal vari-
ables.

If v is a state variable, then we speak of a state timeline.
Else, we speak of an event timeline.

Sequence I is assumed to be countable.2 Thus, I can
be seen as a sequence of instant indices. Let be I =
[1, . . . i, . . .], I+ = [0, 1, . . . i, . . .], and I− = [2, . . . i, . . .].
Sequence tI associates with each instant i ∈ I a temporal
variable ti ∈ R which represents the temporal position of
instant i. Sequence vI associates with each instant i ∈ I+

an atemporal variable vi ∈ d which represents the value of
v at instant i.

Instants are temporally ordered. So, we enforce that ∀i ∈
I−, ti−1 ≤ ti and (ti = ti−1)→ (vi = vi−1). Moreover, in
case of an event timeline, we enforce that v0 = ⊥.

A timeline tl = 〈v, d, I, tI , vI〉 represents the way v
evolves over time. Sequence I is the sequence of the instants
at which changes or events may occur (they may occur, but
are not mandatory), tI is the sequence of their temporal po-
sitions, and vI the sequence of values of v at these instants.
The first instant (0) in this sequence is fictitious and has no
associated temporal position. It is used to represent the ini-
tial value of v, equal to ⊥ in case of an event variable (no
event at the initial instant). Figure 3 shows the tabular rep-
resentation of such a timeline.

0 1 . . . i . . .
t t1 . . . ti . . .
v v0 v1 . . . vi . . .

Figure 3: Tabular representation of a timeline

It is important not to mistake the sequence I of instants
for the sequence tI of their temporal positions. From now,
it is also important not to mistake state and event variables
for temporal and atemporal variables that appear in time-
lines. Only the latter are actually mathematical variables.

2A set is denumerable if and only if it is equipollent to the finite
ordinals. It is countable if and only if it is either finite or denumer-
able.

The former are functions over time. When confusion will be
possible, we will keep the term variable for temporal and
atemporal variables and use the term timeline for state and
event variables. Moreover, when no confusion will be pos-
sible, we will speak indifferently of v and tl, making no dis-
tinction between a state or event variable and its associated
timeline.

A timeline tl = 〈v, d, I, tI , vI〉 is said to be finite if I is
finite. It is said to be completely assigned if all the temporal
and atemporal variables in tI and vI are assigned. Let tl =
〈v, d, I, tI , vI〉 be a finite completely assigned timeline, with
I = [1, . . . i, . . . l]. We refer to l as its length and to the
closed interval [t1, tl] as its temporal horizon H .

From the assumptions of Section Modelling Assump-
tions (a state variable remains constant and an event vari-
able remains equal to ⊥ between two successive instants of
change or event), it is easy to derive from any finite com-
pletely assigned timeline tl = 〈v, d, I, tI , vI〉 the function
which associates with any t ∈ H (and not only with any
t ∈ tI) the value that v takes at t (vi when i = max{i′ ∈
I | ti′ ≤ t} for a state timeline; vi if there exists i ∈ I such
that ti = t and ⊥ otherwise for an event timeline) but also
the value it takes just before t1 (v0 for a state timeline; ⊥
for an event timeline) and the one it takes just after tl (vl for
a state timeline; ⊥ for an event timeline). Figure 4 shows
a partial graphical representation of this function: piecewise
constant function for a state timeline and multi-dirac func-
tion for an event one.

v

t

H

t1 ti tl

vl

v1
v0

vi

v

t

H

⊥ t1

v1

vl

ti tl

vi

Figure 4: Functions over time, associated with a finite com-
pletely assigned timeline of length l, in case of a state time-
line (above) or an event timeline (below)

Constraint networks on timelines
Constraint network definition
In this section, we show how constraints can be defined on
timelines, in order to represent the combined evolutions of
the state and event variables that are either possible or re-
quired.

Definition 2 A constraint network CNT on timelines is a
pair 〈TL,C〉 where:

• TL is a finite set of timelines which all share the same
sequence I of instants and the same sequence tI of their
temporal positions;

• C is a finite set of constraints on the timelines in TL (see
definition 3).

We note V = {v | 〈v, d, I, tI , vI〉 ∈ TL}, ∀i ∈ I+,
Vi = {vi | v ∈ V }, VI = [Vi | i ∈ I+]. SV , SVi, and
SVI (respectively EV , EVi, and EVI) can be similarly de-
fined by restricting ourselves to state timelines (respectively
event timelines). Finally, we note V ar = tI ∪ VI

tI is the set of temporal variables in the CNT , VI the
set of atemporal variables, and V ar the whole set of vari-
ables, either temporal or atemporal. The same way as with
timelines, we can define what a finite CNT and a completely
assigned one are.

Definition 3 A constraint c on a set TL of timelines is a
quadruple 〈qt, cd, sc, df〉 where:

• qt is a finite sequence [q1, . . . qj , . . . qm] of quantifiers,
with qj ∈ {∀,∃};

• cd is a finite sequence [c1, . . . cj , . . . cm] of conditions,
each condition cj being a boolean function over Ij;3

• sc is a function which associates with any sequence
[i1, . . . ij , . . . im] ∈ Im satisfying the conditions in cd a
basic constraint scope sc(i1, . . . im), that is a finite se-
quence of variables in V ar;

• df is a function which associates with any sequence
[i1, . . . ij , . . . im] ∈ Im satisfying the conditions in cd a
basic constraint definition df(i1, . . . im), that is a boolean
function over the Cartesian product of the domains of the
variables in sc(i1, . . . im).

If m = 0, then qt = ∅ and qt = ∅, sc is a basic constraint
scope, and df a basic constraint definition.

A basic constraint is a classical CSP constraint, defined
as usual by its scope sc, which is a finite sequence of vari-
ables, and its definition df , which is a boolean function over
the Cartesian product of the domains of the variables in
sc (Rossi, Beek, & Walsh 2006). Quantification qt is used
to specify in one non basic constraint a possibly infinite set
of basic constraints by iterating on I which may be infinite.
Condition cd is used to limit the elements of I on which
to iterate. Functions sc and df are used to associate a ba-
sic constraint, that is a scope sc(i1, . . . im) and a definition
df(i1, . . . im), with any sequence [i1, . . . im] ∈ Im. Scopes
can be specified by extension when I is finite or m = 0.
They must be specified by intension otherwise. Definitions
can be specified by extension when I is finite or m = 0 and
when the domains of the involved variables are finite. They
must be specified by intension otherwise.

To take a very simple example, let us consider a sys-
tem which is represented by one state variable v whose
value changes at each instant. We want to express that
∀i ∈ I , vi 6= vi−1. The associated CNT constraint is
c = 〈qt, cd, sc, df〉 where qt = [∀] (sequence of quantifiers
reduced to the only quantifier ∀), cd = [true] (no condition
on I), and ∀i ∈ I , sc(i) = [vi, vi−1] (scope limited to vari-
ables vi and vi−1) and df(i) ≡ (vi 6= vi−1) (definition given
by the 6= relation between both variables).

3Ij is the Cartesian product of I , j times.

In spite of the presence of quantifiers, it is important not
to mistake this framework with the Quantified CSP frame-
work (Börner et al. 2003). Here, quantification is associated
with variable indices and used to specify compactly possibly
infinite sets of constraints, whereas quantification is associ-
ated with variable values in the QCSP framework.

Constraint satisfaction
Let us consider a finite CNT 〈TL,C〉 and a complete assign-
ment A of it, that is of the set V ar of involved variables. We
can define recursively what is the satisfaction of a constraint
c ∈ C by A.

Definition 4 A complete assignment A of a finite CNT
〈TL, C〉 satisfies a constraint c ∈ C, c = 〈qt, sc, df〉 if
and only if it satisfies the quadruple 〈∅, qt, sc, df〉. A com-
plete assignment A of a finite CNT satisfies a quadruple
〈Is, qt, sc, df〉, where Is is a sequence of elements of I , if
and only if:

• if qt = ∅: (df(Is))(A↓sc(Is)) = true

• if qt = [q] ∪ qt′:
– if q = ∀: ∀i ∈ I such that cd(Is ∪ [i]), A satisfies
〈Is ∪ [i], qt′, sc, df〉;

– if q = ∃: ∃i ∈ I such that cd(Is ∪ [i]) and A satisfies
〈Is ∪ [i], qt′, sc, df〉.

In the first case (empty sequence of quantifiers), the
quadruple specifies a basic CSP constraint and constraint
satisfaction is defined as usual in the CSP framework. The
second case (non empty sequence of quantifiers), can be split
into two sub-cases according to the first quantifier in the se-
quence: ∀ or ∃. Note that a universal quantifier leads to a
conjunction of constraints, whereas an existential one leads
to a disjunction.

We say that a complete assignment A of the variables V ar
of a finite CNT is consistent if and only if it satisfies all the
constraints in C.

Complexity of constraint checking
If all the variables have finite domains of values of maxi-
mal size md, if all the basic constraints implicitly defined by
the non basic ones are of maximal arity ma, if all the non
basic constraints have sequences of quantifiers of maximal
size ms, and if the CNT is of maximal length l, then the
time complexity of checking the satisfaction of a constraint
by a complete assignment is O(lms · c(ma, md)), if we note
c(ma, md) the time complexity of checking the satisfaction
of a basic constraint of maximal arity ma over domains of
maximal size md. Without any surprise, this complexity
grows exponentially with the maximal size ms of the se-
quences of quantifiers used in the constraint specifications.

Useful types of constraint
Section Constraint network definition introduced a very
generic way of specifying constraints on timelines. But, it
may be interesting to focus on some specific cases which
may be a priori very useful when modelling and reason-
ing on discrete event dynamic systems. In this section, we

consider pure temporal, instantaneous state, instantaneous
event, instantaneous transition, and non instantaneous tran-
sition constraints.

Pure temporal constraints
Pure temporal constraints, which involve only temporal
variables, are useful to constrain the temporal positions of
the instants in the timelines.

A pure temporal constraint is defined as a constraint
where scopes sc(i1, . . . im) are made only of variables in
tI : ∀[i1, . . . im] ∈ Im , sc(i1, . . . im) ⊆ tI .

A stronger interesting restriction would consist in limiting
to 2 the arity of the basic constraints and in enforcing that
their definitions be of the form df(i1, i2) ≡ ((ti1 − ti2) ∈
[lb, ub]) in case of binary constraints and df(i) ≡ (ti ∈
[lb, ub]) in case of unary constraints, resulting in only simple
temporal constraints (Dechter, Meiry, & Pearl 1991).

Note the presence of implicit simple temporal constraints
in each timeline, enforcing that ∀i ∈ I−, ti−1 ≤ ti. These
constraints can be modelled using one non basic constraint
c = 〈qt, cd, sc, df〉, where qt = [∀], cd = [i > 1], and
∀i ∈ I−, sc(i) = [ti−1, ti] and df(i) ≡ (ti−1 ≤ ti).

Instantaneous state constraints
Instantaneous state constraints involve only atemporal state
variables at the same instant, at which can be added the tem-
poral variable at this instant. They are useful to express the
combinations of values of the state variables at the same in-
stant that are possible or required, possibly depending on the
temporal position of this instant.

An instantaneous state constraint is defined as a constraint
where the length of the sequence of quantifiers is limited to
1 and ∀i ∈ I , sc(i) ⊆ SVi ∪ {ti}.

For example, let us assume a robot equipped with two
observation instruments which cannot be simultaneously ac-
tive. This requirement can be modelled using two state time-
lines is1 and is2, each one with a boolean domain, rep-
resenting the activity status of each instrument, with true
associated with instrument activity, and one non basic con-
straint c = 〈qt, cd, sc, df〉, where qt = [∀], cd = [true], and
∀i ∈ I , sc(i) = [is1i, is2i] and df(i) ≡ ¬(is1i∧is2i). This
constraint specifies that ∀i ∈ I , ¬(is1i ∧ is2i).

To take another example, let us assume that we want the
robot to be at a given location loG by time tG. This re-
quirement can be modelled using one state timeline lo, rep-
resenting the robot location, and one non basic instanta-
neous state constraint c = 〈qt, cd, sc, df〉, where qt = [∃],
cd = [true], and ∀i ∈ I , sc(i) = [loi, ti] and df(i) ≡
((loi = loG) ∧ (ti ≤ tG)). This constraint specifies that
∃i ∈ I such that ((loi = loG) ∧ (ti ≤ tG)).

Instantaneous event constraints
Instantaneous event constraints involve only atemporal
event variables at the same instant, at which can be added
the temporal variable at this instant and atemporal state
variables at the previous instant. They are useful to express
the combinations of values of the event variables at the same
instant that are possible or required, possibly depending on

the temporal position of this instant and on the combinations
of values of the state variables just before this instant, in or-
der to model for example action preconditions.

An instantaneous event constraint is defined as a con-
straint where the length of the sequence of quantifiers is lim-
ited to 1 and ∀i ∈ I , sc(i) ⊆ EVi ∪ {ti} ∪ SVi−1.

For example, let us assume a robot which has at its dis-
posal a finite set A of actions, which cannot be simultane-
ously triggered. Moreover, let us assume that each action
a ∈ A requires a level e(a) of energy to be triggered. This
requirement can be modelled using one event timeline ca
representing the triggered action, with a domain equal to
A ∪ {⊥} (⊥ if no action is triggered), one state timeline
ce representing the current level of energy, and one non ba-
sic instantaneous event constraint c = 〈qt, cd, sc, df〉, where
qt = [∀], cd = [true], and ∀i ∈ I , sc(i) = [cai, cei−1] and
df(i) ≡ ((cai 6= ⊥) → (cei−1 ≥ e(cai))). This constraint
specifies that ∀i ∈ I , ((cai 6= ⊥)→ (cei−1 ≥ e(cai))).

Instantaneous transition constraints
Instantaneous transition constraints involve only atemporal
state or event variables at the same instant, at which can
be added the temporal variable at this instant and atempo-
ral state variables at the previous instant. They are useful
to express the combinations of values of the state and event
variables at the same instant that are possible or required,
possibly depending on the temporal position of this instant
and on the combinations of values of the state variables just
before this instant, in order to model for example instanta-
neous action effects.

An instantaneous transition constraint is defined as a con-
straint where the length of the sequence of quantifiers is lim-
ited to 1 and ∀i ∈ I , sc(i) ⊆ Vi ∪ {ti} ∪ SVi−1.

For example, let us consider an impulse switch whose po-
sition (open or close) can change in case of any impulse.
However, let us assume that this switch may fail by re-
maining stuck at the position it had before failure. These
facts can be modelled using three timelines, each one with
a boolean domain, and one non basic instantaneous tran-
sition constraint. A first state timeline sp represents the
current switch position (open or close), with true asso-
ciated with open. A second state timeline st represents
the state of the switch (stuck or not), with true associ-
ated with stuck. A third event timeline im represents the
current impulse (present or not), with true associated with
present and false with absent (⊥ = false). The physical
constraints are represented by one non basic instantaneous
transition constraint c = 〈qt, cd, sc, df〉, where qt = [∀],
cd = [true], and ∀i ∈ I , sc(i) = [spi, spi−1, sti, imi] and
df(i) ≡ ((spi 6= spi−1) ↔ (¬sti ∧ imi)), expressing that
the switch position can change if and only the switch is not
stuck and an impulse occurs. This constraint specifies that
∀i ∈ I , ((spi 6= spi−1)↔ (¬sti ∧ imi)).

Non instantaneous transition constraints
Non instantaneous transition constraints are a bit more com-
plex. They involve atemporal state or event variables be-
tween two instants i1 and i2, i1 and i2 included, at which
can be added the temporal variables at instants i1 and i2, and

atemporal state variables at instant i1 − 1. They are useful
to express the combinations of values of the state and event
variables that are possible or required between two instants,
possibly depending on the temporal position of both instants
and on the combinations of values of the state variables just
before the first instant, in order to model for example non
instantaneous action effects.

A non instantaneous transition constraint is defined as a
constraint where the length of the sequence of quantifiers is
limited to 2 and ∀[i1, i2] ∈ I2 such that i1 < i2, sc(i1, i2) ⊆
∪i1≤i≤i2Vi ∪ {ti1} ∪ {ti2} ∪ SVi1−1.

For example, let us assume a robot which has at its dis-
posal a finite set A of actions, which cannot run simulta-
neously for any reason. Moreover, let us assume that each
action a ∈ A has a duration which is not precisely known,
but belongs to an interval [dmin(a), dmax(a)], and that an
action a cannot be immediately followed by the same ac-
tion a. These facts can be modelled using one state timeline
ca representing the current action, with a domain equal to
A, at which we can add a special value representing the ab-
sence of current action, and one non basic non instantaneous
transition constraint c = 〈qt, cd, sc, df〉, where qt = [∀,∃],
cd = [true, i1 < i2], and ∀[i1, i2] ∈ I2 , sc(i1, i2) =
[cai , (i1 − 1) ≤ i ≤ i2] ∪ [ti1 , ti2] and df(i1, i2) ≡
(((cai1−1 6= a) ∧ (cai1 = a)) → ((∧i1<i<i2(cai = a)) ∧
(cai2 6= a) ∧ (dmin(a) ≤ (ti2 − ti1) ≤ dmax(a)))). It is
straightforward to show from Definition 4 that this constraint
specifies that ∀i1 ∈ I , (((cai1−1 6= a) ∧ (cai1 = a)) →
(∃i2 ∈ I , ((i1 < i2) ∧ (∧i1<i<i2(cai = a)) ∧ (cai2 6=
a) ∧ (dmin(a) ≤ (ti2 − ti1) ≤ dmax(a))))).

If actions in A produce some resource, such as on-board
memory in case of data downloading, and if we assume that
production is effective at the end of each action, each ac-
tion a ∈ A producing r(a), this can be modelled by using
a state timeline cr representing the current level of this re-
source and by adding cri2−1 and cri2 in scopes sc(i1, i2),
and condition (cri2 = cri2−1 + r(a)) in the right side of
definitions df(i1, i2).

Subsumed frameworks
In this section, we show how the proposed framework sub-
sumes existing ones such as automata, Petri nets, STRIPS
planning, as well as classical models used in scheduling.

Automata
An automaton is usually defined as a quadruple 〈S, E, T, s0〉
where:
1. S is a finite set of states;
2. E is a finite set of transition labels;
3. T ⊆ S × E × S is a set of transitions;
4. s0 ∈ S is the initial state.

An automaton specifies possible transitions: a transition
e ∈ E is possible from state s ∈ S to state s′ ∈ S if and
only if 〈s, e, s′〉 ∈ T . It is easy to show that an automaton
〈S, E, T, s0〉 is equivalent to a CNT 〈TL,C〉 where:
1. TL is made of two timelines: one state timeline cs of

domain S and one event timeline e of domain E ∪ {⊥};

2. C is made of two constraints:

(a) an instantaneous state basic constraint c0 =
〈qt0, cd0, sc0, df0〉, with qt0 = ∅, cd0 = ∅,
sc0 = {cs0}, and df0 ≡ (cs0 = s0), specifies
the initial state;

(b) an instantaneous transition constraint c =
〈qt, cd, sc, df〉, with qt = [∀], cd = [true],
and ∀i ∈ I , sc(i) = [csi−1, ei, csi] and
df(i) ≡ (〈csi−1, ei, csi〉 ∈ T), specifies the fol-
lowing possible transitions.

Constraints on CNT appear as a compact way of speci-
fying synchronized products of automata (Arnold & Nivat
1982).

Petri nets
A Petri net is usually defined as a quadruple 〈P, T, Ip,Op〉
where:

1. P is a finite set of places;

2. T is a finite set of transitions;

3. Ip is an input function from P ×T to N, which associates
a positive integer (possibly null) with each place p ∈ P
and each transition t ∈ T ;

4. Op is a similar output function.

A marking m (which can be considered as a state) is de-
fined as a function from P to N, which associates an integer
m(p) with each place p ∈ P . To be triggered from marking
m, a transition t ∈ T must satisfy the following condition:
∀p ∈ P , m(p) ≥ Ip(p, t). If a transition t ∈ T is trig-
gered from marking m, the result is a marking m′ where
∀p ∈ P , m′(p) = m(p) − Ip(p, t) + Op(p, t). As with
automata, it is easy to show that a Petri net 〈P, T, Ip, Op〉 is
equivalent to a CNT 〈TL,C〉 where:

1. a state timeline mp of domain N is associated with each
place p ∈ P , at which we add one event timeline e of
domain T ∪ {⊥};4

2. C is made of two sets of constraints:

(a) an instantaneous event constraint cE
p,t =

〈qtEp,t, cd
E
p,t, sc

E
p,t, df

E
p,t〉 is associated with each place

p ∈ P and each transition t ∈ T , with qtEp,t = [∀],
cdE

p,t = [true], and ∀i ∈ I , scE
p,t(i) = [ei, mp,i−1]

and dfE
p,t(i) ≡ ((ei = t) → (mp,i−1 ≥ Ip(p, t))), to

specify transition preconditions;
(b) an instantaneous transition constraint cT

p,t =
〈qtTp,t, cd

T
p,t, sc

T
p,t, df

T
p,t〉 is associated with each

place p ∈ P and each transition t ∈ T , with
qtTp,t = [∀], cdT

p,t = [true], and ∀i ∈ I ,
scT

p,t(i) = [ei, mp,i−1, mp,i] and dfT
p,t(i) ≡ ((ei =

t) → (mp,i = mp,i−1 − Ip(p, t) + Op(p, t))), to
specify transition effects.

4In a Petri net, two transitions cannot be triggered at the same
time.

STRIPS planning
Planning problems may be of very different kind and, de-
spite many efforts, there is no unique framework able to
cover all of them (Ghallab, Nau, & Traverso 2004). This
is why we restrict ourselves to the most classical one: the
STRIPS framework (Fikes & Nilsson 1971) where a plan-
ning problem is defined as a quadruple 〈F,A, Is, G〉 where:

1. F is a finite set of boolean variables, called fluents;

2. A is a finite set of actions, where each action a ∈ A is
defined by a triple 〈pa, e−a , e+

a 〉, with pa, e−a , e+
a ⊆ F and

e−a ∩ e+
a = ∅, where pa, e−a , and e+

a are action precondi-
tions, negative effects, and positive effects;

3. Is ⊆ F is a set of fluents, which defines the initial state;

4. G is a finite set of logical conditions on F , called goals.

A state s is defined as a function from F to B, which as-
sociates a boolean value s(f) with each fluent f ∈ F . The
following conditions must be satisfied by states and transi-
tions:

1. in the initial state s0, (s0)(f) if and only if f ∈ Is;

2. an action a ∈ A can be executed in a state s if and only if
∀f ∈ pa , s(f);

3. if an action a ∈ A is executed in a state s, the result is a
state s′ where:

(a) ∀f ∈ e−a , ¬s′(f);
(b) ∀f ∈ e+

a , s′(f);
(c) ∀f ∈ F − (e−a ∪ e+

a) , s′(f) = s(f).

The request usually associated with a planning problem
is to produce a plan, that is a sequence of actions, whose
execution allows the system to go from the initial state to
a state that satisfies the goal conditions. It is easy to show
that a planning problem 〈F,A, Is, G〉 is equivalent to a CNT
〈TL, C〉 where:

1. a state timeline sf of boolean domain is associated with
each fluent f ∈ F , at which we add one event timeline
act of domain A ∪ {⊥};

2. C is made of five sets of constraints:

(a) an instantaneous state basic constraint cIs
f =

〈qtIs
f , cdIs

f , scIs
f , df Is

f 〉 is associated with each fluent
f ∈ F , with qtIs

f = ∅, cdIs
f = ∅, scIs

f = [sf,0], and
df Is

f ≡ (sf,0 ↔ f ∈ Is), to specify the initial state;

(b) an instantaneous event constraint cP
f,a =

〈qtPf,a, cdP
f,a, scP

f,a, dfP
f,a〉 is associated with each

action a ∈ A and each fluent f ∈ pa, with qtPf,a = [∀],
cdP

f,a = [true], and ∀i ∈ I , scP
f,a(i) = [acti, sf,i−1]

and dfP
f,a(i) ≡ ((acti = a) → sf,i−1), to specify

action preconditions;
(c) an instantaneous transition constraint cE−

f,a =
〈qtE−f,a , cdE−

f,a , scE−
f,a , dfE−

f,a 〉 (resp. cE+
f,a =

〈qtE+
f,a , cdE+

f,a , scE+
f,a , dfE+

f,a 〉) is associated with each
action a ∈ A and each fluent f ∈ e−a (resp. f ∈ e+

a),

with qtE−f,a = qtE+
f,a = [∀], cdE−

f,a = cdE+
f,a = [true],

and ∀i ∈ I , scE−
f,a (i) = scE+

f,a (i) = [acti, sf,i],
and dfE−

f,a (i) ≡ ((acti = a) → ¬sf,i) (resp.
dfE+

f,a (i) ≡ ((acti = a) → sf,i)), to specify negative
(resp. positive) effects;

(d) an instantaneous transition constraint cN
f,a =

〈qtNf,a, cdN
f,a, scN

f,a, dfN
f,a〉 is associated with each

action a ∈ A and each fluent f ∈ F − (e−a ∪ e+
a),

with qtNf,a = [∀], cdN
f,a = [true], and

∀i ∈ I , scN
f,a(i) = [acti, sf,i−1, sf,i], and

dfN
f,a(i) ≡ ((acti = a) → (sf,i = sf,i−1)), to

specify null effects;
(e) a unique instantaneous state constraint cG =
〈qtG, cdG, scG, dfG〉, with qtG = [∃], cdG = [true],
and ∀i ∈ I , scG(i) = (F (G))i (if F (G) is the set of
fluents involved in G), and dfG(i) ≡ ∧g∈Ggi, to spec-
ify goal conditions.

Job-shop scheduling
In the scheduling domain, there is no reference framework
similar to the STRIPS framework used in planning. There
are only problems of very different kind. We focus here on
a limited version of the so-called job-shop scheduling, one
of the most classical scheduling problems, defined by a fi-
nite set T of tasks with, associated with each task t ∈ T , a
duration dut, an earliest start time est, and a latest end time
let. One assumes that all the tasks must be performed and
that they all require a common non sharable resource: two
tasks cannot use this resource at the same time. Let nt = |T |
be the number of tasks. This problem can be modelled by a
finite CNT 〈TL,C〉 of length l = 2 · nt where:

1. one state timeline ct of domain T ∪ {0} represents the
currently active task, with 0 representing the absence of
currently active task (there is no need for any event time-
line);

2. a constraint ct = 〈qtt, cdt, sct, dft〉 is associated with
each task t ∈ T , with qtt = [∃], cdt = [true], ∀i ∈ I ,
sct(i) = [cti, ti, ti+1], and dft(i) ≡ ((cti = t) ∧ (est ≤
ti ≤ ti+1 ≤ let) ∧ ((ti+1 − ti) = dut)).

What remains to be done
The main result of this article is the proposal of a framework
which, the first time as far as we know, allows discrete event
dynamic systems (from automata and Petri nets to planning
and scheduling) to be modelled in a uniform way using the
basic notion of constraint.

The first task is to assess further the modelling power
of the proposed framework, by addressing other frame-
works such as temporal logics (Pnueli 1977), situation cal-
culus (Levesque et al. 1997), or timed automata (Alur &
Dill 1994), as well as various real-world problems.

When timelines are finite (and thus the set of involved
variables), this framework allows situation tracking, valida-
tion or decision problems to be cast uniformly as CSP or
QCSP and solved using any CSP or QCSP solver: CSP for

situation tracking, validation, and optimistic decision prob-
lems, and QCSP for pessimistic decision ones.5 In such a
setting, it would be useful to develop or to adapt constraint
propagation mechanisms associated with the most useful
constraints we identified, which can be seen as global con-
straints. Beyond, it will be necessary to explore ways of
answering requests on infinite timelines, as this is done with
automata, Petri nets, and also planning problems.

About possible extensions, a first one would consist in
going from hard constraints (which are used here to model
possible/impossible facts as well as hard requirements) to
soft ones, in order to represent and reason on plausibility
and utility degrees, as done in (Pralet, Verfaillie, & Schiex
2006). This would allow us to capture for example Markov
Decision Problems (Puterman 1994) and probabilistic plan-
ning (Kushmerick, Hanks, & Weld 1995). A second or-
thogonal extension would consist in relaxing the assump-
tion that a state variable remains constant between two
successive instants in a timeline and in considering linear,
monotonic, or other evolutions (Trinquart & Ghallab 2001;
Penberthy & Weld 1994). Finally, a third one could relax the
assumption of a total order between instants in timelines.

Acknowledgements
This work has been done thanks to the CNES-ONERA-
LAAS AGATA project (Autonomy Generic Architecture :
Tests and Applications; see http://www.agata.fr), whose aim
is to develop technical tools allowing space system auton-
omy to be improved. It took advantage of the feedback from
many people involved in the project, we would like to thank.

References
[Alur & Dill 1994] Alur, R., and Dill, D. 1994. A Theory

of Timed Automata. Journal of Theoretical Computer Science
126(2):183–235.

[Arnold & Nivat 1982] Arnold, A., and Nivat, M. 1982. Com-
portements de processus. In Actes du Colloque AFCET "Les
Mathématiques de l’Informatique", 35–68.

[Baptiste, Pape, & Nuijten 2001] Baptiste, P.; Pape, C. L.; and
Nuijten, W. 2001. Constraint-based Scheduling: Applying Con-
straint Programming to Scheduling Problems. Kluwer Academic
Publishers.

[Barták 1999] Barták, R. 1999. Dynamic Constraint Models
for Complex Production Environments. In Proc. of the Joint
ERCIM/Compulog-Net Workshop.

[Benveniste et al. 2003] Benveniste, A.; Caspi, P.; Edwards, S.;
Halbwachs, N.; Guernic, P. L.; and de Simone, R. 2003. The
Synchronous Languages Twelve Years Later. Proc. of the IEEE
91(1):64–83.

[Börner et al. 2003] Börner, F.; Bulatov, A.; Jeavons, P.; and
Krokhin, A. 2003. Quantified Constraints: Agorithms and Com-
plexity. In Proc. of CSL-03, 244–258.

[Dechter, Meiry, & Pearl 1991] Dechter, R.; Meiry, I.; and Pearl,
J. 1991. Temporal Constraint Networks. Artificial Intelligence
49:61–95.

5When the domains of some temporal or atemporal variables
are continuous, the resulting CSP/QCSP problems are hybrid dis-
crete/continuous.

[Delzanno & Podelski 2001] Delzanno, G., and Podelski, A.
2001. Constraint-based Deductive Model Checking. Software
Tools for Technology Transfer 3(3):250–270.

[Fikes & Nilsson 1971] Fikes, R., and Nilsson, N. 1971. STRIPS:
a New Approach to the Application of Theorem Proving. Artifi-
cial Intelligence 2:189–208.

[Frank & Jónsson 2003] Frank, J., and Jónsson, A. 2003.
Constraint-Based Attribute and Interval Planning. Constraints
8(4):339–364.

[Ghallab, Nau, & Traverso 2004] Ghallab, M.; Nau, D.; and
Traverso, P. 2004. Automated Planning: Theory and Practice.
Morgan Kaufmann.

[Ghallab 1996] Ghallab, M. 1996. On Chronicles: Representa-
tion, On-line Recognition and Learning. In Proc. of KR-96, 597–
606.

[Kautz & Selman 1992] Kautz, H., and Selman, B. 1992. Plan-
ning as Satisfiability. In Proc. of ECAI-92, 359–363.

[Kushmerick, Hanks, & Weld 1995] Kushmerick, N.; Hanks, S.;
and Weld, D. 1995. An Algorithm for Probabilistic Planning.
Artificial Intelligence 76:239–286.

[Laborie & Ghallab 1995] Laborie, P., and Ghallab, M. 1995. Ix-
TeT: an Integrated Approach for Plan Generation and Scheduling.
In Proc. of ETFA-95, 485–495.

[Levesque et al. 1997] Levesque, H.; Reiter, R.; Lesperance, Y.;
Lin, F.; and Scherl, R. 1997. GOLOG: A Logic Programming
Language for Dynamic Domains. Journal of Logic Programming
31(1-3):59–83.

[Muscettola et al. 1998] Muscettola, N.; Nayak, P.; Pell, B.; and
Williams, B. 1998. Remote Agent: To Boldly Go Where No AI
System Has Gone Before. Artificial Intelligence 103(1-2):5–48.

[Muscettola 1994] Muscettola, N. 1994. HSTS: Integrating Plan-
ning and Scheduling. In Zweden, M., and Fox, M., eds., Intelli-
gent Scheduling. Morgan Kaufmann. 169–212.

[Penberthy & Weld 1994] Penberthy, J., and Weld, D. 1994. Tem-
poral Planning with Continuous Change. In Proc. of AAAI-94,
1010–1015.

[Pnueli 1977] Pnueli, A. 1977. The Temporal Logic of Programs.
In Proc. of FOCS-77, 46–57.

[Pralet, Verfaillie, & Schiex 2006] Pralet, C.; Verfaillie, G.; and
Schiex, T. 2006. Decision with Uncertainties, Feasibilities, and
Utilities: Towards a Unified Algebraic Framework. In Proc. of
ECAI-06, 427–431.

[Puterman 1994] Puterman, M. 1994. Markov Decision Pro-
cesses, Discrete Stochastic Dynamic Programming. John Wiley
& Sons.

[Rossi, Beek, & Walsh 2006] Rossi, R.; Beek, P. V.; and Walsh,
T., eds. 2006. Handbook of Constraint Programming. Elsevier.

[Trinquart & Ghallab 2001] Trinquart, R., and Ghallab, M. 2001.
An Extended Functional Representation in Temporal Plannning:
Towards Continuous Change. In Proc. of ECP-01.

[van Beek & Chen 1999] van Beek, P., and Chen, X. 1999. CPlan:
A Constraint Programming Approach to Planning. In Proc. of
AAAI-99, 585–590.

[Verfaillie & Jussien 2005] Verfaillie, G., and Jussien, N. 2005.
Constraint Solving in Uncertain and Dynamic Environments: A
Survey. Constraints 10(3):253–281.

	Introduction
	Modelling Assumptions
	Time
	States and State Changes
	Events and Event Occurrences
	State Changes and Event Occurrences

	Timelines
	Constraint networks on timelines
	Constraint network definition
	Constraint satisfaction
	Complexity of constraint checking

	Useful types of constraint
	Pure temporal constraints
	Instantaneous state constraints
	Instantaneous event constraints
	Instantaneous transition constraints
	Non instantaneous transition constraints

	Subsumed frameworks
	Automata
	Petri nets
	STRIPS planning
	Job-shop scheduling

	What remains to be done
	Acknowledgements

