
An Efficient Model for Dynamic and Constrained Resource Allocation
Problems

Camille Besse & Brahim Chaib-draa
Dep. of Comp. Science, Laval University,

Quebec (Qc), Canada
{besse,chaib}@damas.ift.ilaval.ca

Abstract

Dynamic constraint satisfaction is a useful tool for rep-
resenting and solving sequential decision problems with
complete knowledge in dynamic world and particularly
constrained resource allocation problems. However,
when resources are unreliable, this framework becomes
limited due to the stochastic outcomes of the assign-
ments chosen. On the contrary, Markov Decision Pro-
cesses (MDPs) handle stochastic outcomes of unreli-
able actions, but their complexity explodes when using
state-defined constraints. We thus propose an exten-
sion of the MDP framework so as to represent con-
strained and stochastic actions in sequential decision
making. The basis of this extension consists in model-
ing the evolution of a dynamic constraint network by
a MDP. We first study the complexity of the problem
of finding an optimal policy for this model and then
we propose an algorithm for solving it. Comparison to
standard MDP shows that this framework noticeably
improves policy computation.

Introduction
An autonomous agent, dynamically allocating stochas-
tic resources to incoming tasks, faces increasingly com-
plex situations when formulating its control policy.
These situations are often constrained by limited re-
sources of the agent, time limits, physical constraints
or other agents. All these hindrances explain why com-
plexity and state space dimension increase exponen-
tially in size of the considered problem. Unfortunately,
models that already exist either consider the sequential
aspect of the environment, or its stochastic one or its
constrained one. To the best of our knowledge, frame-
works that model two of these aspects are not numer-
ous, and even less numerous are frameworks that con-
sider all three.

For example, dynamic constraint satisfaction prob-
lems (DCSPs) have been introduced by Dechter &
Dechter (1988) to address problems that involve dy-
namics in constrained problems. In DCSPs, there is
typically no transition model, and thus no concept of
sequence of controls. Their objective is to minimize the
work needed to repair a solution when a change occurs
or to find robust solutions which could face changes.
However, they are not in general used to plan in a

stochastic world were solution at one step influences
solutions in further steps when such knowledge is avail-
able.

On the other hand, Fargier, Lang, & Schiex (1996)
proposed mixed CSPs (MCSPs) and probabilistic CSPs
(PCSPs) (Fargier et al., 1997; Shazeer, Littman, &
Keim, 1999), in which some uncontrollable variables
model uncertainty. Solutions then depend on their pos-
sible values. While this model produces robust solu-
tions, it does not deal with sequence of events or with
unexpected events in which case a practical solver will
have to be able to fall back to existing DCSP methods.
Thus, this approach considers only the stochastic and
the constrained aspects of the environment.

In their approach, Fowler & Brown (2003) included
sequential decision making in their Branching Con-
straint Satisfaction Problem (BCSP) to model problems
in which there is uncertainty in the number of variables.
They construct a tree of the sequential assignment of
variables depending on probability that changes income
during resolution. This model includes stochastic, con-
strained and dynamic aspects, but does not deal with
sequence of complete assignments and changes in vari-
able set and/or constraint set as the DCSP framework
does.

In the same context, Walsh (2002) proposed the
Stochastic CSP (SCSP) framework that encompasses
all models described above. Thus, his approach includes
stochastic and constrained aspects as well as sequential
decision making. However, this approach does not aim
to choose the best sequence of assignments but only
a sequence that is satisfied with a certain probability
threshold. Indeed, there is no concept of valuation of
an assignment as usually deal resource allocation prob-
lems.

Dolgov & Durfee (2005a,b) presented several ap-
proaches to represent constraints in Markov Decision
Processes mainly using linear programming techniques
and weakly-coupled MDPs. These approaches are very
efficient but suffer of limitation to linear constraints of
linear programming and restriction to weakly-coupled
agents.

In this paper, we introduce a new model based on
DCSPs and Markov decision processes to address con-

strained stochastic resource allocation (sra) problems
by using expressiveness and powerfulness of CSPs. We
thus propose a framework which aims to model dynamic
and stochastic environments for constrained resources
allocation decisions. Then, we present some efficient al-
gorithms based on a combination of last researches in
both constraint satisfaction and Markov decision prob-
lems. A complexity study is also made before present-
ing comparative experiments. We finally conclude with
some remarks on the reasons for our model’s success
and future work.

Background

A classical constraint satisfaction problem (CSP) is a
triple P = 〈X ,D, C〉, where X is the set of variables,
each of them can take its possible values in a domain D
(supposed here finite), and C is a set of constraints re-
stricting the possible values of some variables. We will
denote by S(P) ⊂ D|X | the set of all assignments satis-
fying all constraints C of P . Solving a CSP is equivalent
to finding one element σ ∈ S(P).

Dynamic Constraint Satisfaction Problem
(DCSP)

According to Verfaillie & Jussien (2005) dynamic con-
straint satisfaction problem (DCSP) is a sequence of
η CSPs Ψ = {P1, ..., Pη}, each Pi depending only on
changes in the definition of the previous one Pi−1.
These changes may affect any component in the prob-
lem definition: the set X of variables (by adding new
variables or removing a subset of X), the set C of con-
straints (by adding, removing or modifying) and even-
tually domains D if they are not modifiable by changing
variables or constraints. Formally:

Definition 1. (Dynamic CSP)
A dynamic CSP is a finite set Ψ = {Pi} with each
Pi = 〈Xi,Di, Ci〉 where:

- Xi is the set of variables at step i;
- Di is the set of domains of these variables at step i;
- Ci is the set of constraints restricting variables at step

i.

Solving a DCSP consists in finding a satisfying solu-
tion σi ∈ S(Pi) for each i, 1 6 i 6 η. Most past work
on DCSPs has been devoted to finding a solution σi+1

based on σi. For instance, solution reuse and reasoning
reuse (Verfaillie & Jussien, 2005) are two approaches
that benefit from previous solutions to produce future
ones. However, none of these approaches attempt to
formalize the evolution of changes so they are not able
to predict and control them.

Hence, dynamic CSPs are inadequate to address the-
ory of control problems. We thus present Markov deci-
sion processes which are a well known approach in this
domain before proposing a new framework based on the
composition of these two approaches.

Markov Decision Processes (MDP)
A Markov Decision Process (MDP) models a planning
problem in which action outcomes are stochastic but the
world state is fully observable. The agent is assumed
to know a probability distribution for action outcomes.
Formally:

Definition 2. (MDP)
A MDP is defined by a tuple M = 〈S,A, T ,R, s0〉
where:

- S is a finite set of states;
- A is a finite set of actions;
- T : S × A × S → [0, 1] is a probability distribution

over S for any s ∈ S and a ∈ A;
- R : S ×A → R is a bounded reward function;
- s0 is the initial state;

Intuitively, T a
ss′ = Pr(s′|s, a) denotes the probability

of moving to state s′ when action a is performed at state
s, while Ra

s denotes the immediate utility associated
with the action a in state s.

Thus, solving an MDP aims to find an optimal policy
π∗ : S 7→ A that associates to each state s ∈ S an
action a ∈ A. π∗ aims to maximize the expected reward
accumulated:

π∗ = sup
π∈Π

Vπ(s)

= sup
π∈Π

[∑
a∈A

π(s, a)
∑
s′∈S
T a

ss′ [Ra
s + γVπ(s′)]

]
where Π is the set of all policies.

Papadimitriou & Tsisiklis (1987) have shown that
finding an optimal policy as described above is one of
the most difficult polynomial problems under some re-
strictions recalled in the section about complexity. Nev-
ertheless, as entries can have an exponential size, this
problem is one of the current major difficulties in the
planning community. In fact, two main factors are re-
sponsible for this tractability problem: the exponential
size of the state space and the branching factor between
each state which make search barely feasible.

Many methods already exist that address the state
space problem. For example, Dearden’s aggregation
(Dearden & Boutilier, 1997) aims to group similar
states while Sutton, Precup, & Singh (1999) organize
states into a hierarchy to facilitate learning and planifi-
cation. Other techniques like real-time exploration like
Bonet’s Labeled real-time dynamic programming algo-
rithm (Bonet & Geffner, 2003) efficiently compute the
optimal policy only on reachable states from a given
state s0. Finally, Boutilier, Dearden, & Goldszmidt
(2000) present factored MDPs that reduce exponen-
tially the size of the state space while bringing closer
MDPs to constraint networks. This is why this pa-
per aims to cover the branching factor problem instead,
by using environmental constraints on actions that will
thus limit state space explosion. Nonetheless, as we will

see in the following sections, using constraints in fac-
tored MDPs in the context of resource allocation prob-
lems reduces also the state space. In fact, one can also
imagine constraints that prune value of state variables
that are not consistent with the considered problem.

Markovian Constraint Satisfaction
Problem (MaCSP)

A Markovian CSP (MaCSP) is a Markov Decision
Process which describes the stochastic evolution of a
bounded dynamic constraint network. States represent
possible configurations of the DCSP among its evolu-
tion, and actions represent assignments of each config-
uration of this DCSP. Thus, in a Markovian CSP, the
Markov property is satisfied as a future configuration
depends only on the previous configuration and the as-
signment chosen. Formally:

Definition 3. (Markovian CSP)
A Markovian CSP (MaCSP) is defined by a tuple Φ =
〈S,Ψ, {A}, T ,R, s0〉 where:

- S = {si, Psi
} where si is the state and each Psi

=
〈Xsi

,Dsi
, Csi
〉 is the current state of the underlying

DCSP Ψ in the state si;
- Ai = {σsi

= {x1, ..., xς} : xk ∈ Dsi
, σsi

∈ S(Psi
)} is

the set of consistent assignments of variables in each
state si, 1 6 i 6 η;

- T σ
sisi+1

= Pr(si+1|si, σ) is the transition probability
that the assignment σ leads from a state si to a state
si+1;

- Rσ
s is a reward function leading to a satisfying subset

of S;
- s0 is the initial state;

In other words, S models a factored state space where
constraints Csi can exist between variables in each state
si. Variables are partitioned in two types: decision vari-
ables that are controllable and state variables that are
not. A is the set of all possible assignments of deci-
sion variables, and Ai the subset of A that is consistent
with current constraints in Csi

. The transition function
T σ

sisi+1
represents the evolution of all variables over time

(including state variables). Thus, if some constraints in
Csi depend on state variables, then, these constraints
may change over time (and in some cases appear or dis-
appear). The reward function Rσ

s that assigns a value
to each assignment of variables depending on the state
si can be viewed in the resource allocation context as
a prioritization of certain tasks over others or as the
return given by achieving some tasks.

In fact, a DCSP is a particular case of MaCSP where
the transition model T σ

sisi+1
is not specified and only

decision variable exists. A DCSP can then be naturally
defined as a MaCSP in which the transition model is
deterministic whatever assignment chosen and reward
function is {satisfied, unsatisfied}.

Moreover, as MaCSPs can be seen as factored MDPs
as described by Boutilier, Dearden, & Goldszmidt

(2000) where some constraints exist between variables
of the factored MDP, this other point of view leads us
to reconsider the transition function definition. In fact,
as defined above, the transition function is a huge ta-
ble which describes the evolution of each variable and
of each constraint from one state to another. The size
of the table is obviously non polynomial in the num-
ber of variables. So, an alternative way to represent
this function is to describe evolution and dependencies
of variables between different states or inside a same
state by a Dynamic Bayesian Network (DBN) (Dean &
Kanazawa, 1990) as described by Guestrin, Koller, &
Parr (2001). Boutilier, Dearden, & Goldszmidt (2000)
also noticed that this representation is at worst as com-
pact as the explicit table and exponentially better in
memory space in most of cases.

Solving a MaCSP consists in finding a consistent as-
signment σsi

for each state si defining a policy ξ∗ : S 7→
A that associates for each state si ∈ S an assignment
σsi ∈ S(Psi) over the finite horizon η. ξ∗ is the optimal
policy over the set of all policies Ξ such as:

ξ∗ = sup
ξ∈Ξ

Vξ(s)

= sup
ξ∈Ξ

[∑
σ∈A

ξ(s, σ)
∑
s′∈S
T σ

ss′ [Rσ
s + γVξ(s′)]

]
where 0 < γ < 1 is a discount factor.

Complexity
The complexity class of satisfying a dynamic CSP is
easy to show since a dynamic CSP is a linear combi-
nation of CSPs in terms of complexity: As stated by
Haralick et al. (1978), the problem of satisfiability of
a constraint network as defined in previous section is
np-complete. Thus,
Lemma 1. The static unrestricted Constraint Satisfac-
tion Problem is np-complete.
Theorem 1. The Dynamic Constraint Satisfaction
Problem is np-complete.

Proof. First we show that the dynamic constraint satis-
faction problem is solvable in polynomial time by a non-
deterministic Turing machine. This is immediate, since
the Turing machine can non-deterministically choose
an assignment at each step and then verify its global
consistency by checking each allowed tuple of each re-
lation. Since R, the factor size of constraints1 is fixed,
the number of tuple to be checked is CR

|X | 6 |X |R which
is polynomial for each step and so for the η steps.

Now we show that some np-complete problem would
be solved by the dynamic constraint satisfaction prob-
lem. The problem to be considered is the static con-
straint satisfaction problem whose completeness is given
by lemma 1. A CSP can be represented as a DCSP
which has the same variables set and whose constraints

1i.e. the maximum number of variables implied in each
constraint, e.g. R = 2 for binary constraints.

are added sequentially to obtain the targeted CSP.
Thus, solving this DCSP will solve the corresponding
CSP. This transformation is clearly polynomial.

Furthermore, Papadimitriou & Tsisiklis (1987) have
shown the following:
Lemma 2. (Papadimitriou & Tsisiklis, 1987) Given an
MDP M, a horizon T , and an integer K, the problem
of computing a policy inM under horizon T that yields
total reward at least K is P-complete.

Thus, as stated for MDPs, it is necessary to place
some restrictions in order to hold the upper bounds.
First, η � |S| and |S(Ps)| � |S|,∀s ∈ S. Then, we also
assume that tables for the transition and the reward
function can be represented with a constant number of
bits. Under these restrictions:
Theorem 2. Given an MaCSP Φ, a horizon η, and
an integer K, the problem of computing a policy in Φ
under horizon η that yields total reward at least K is
np-complete.

Proof. The same methodology is applied as for proposi-
tion 1. We first show that MaCSPs are solvable in poly-
nomial time by a non-deterministic Turing machine.
Since the Turing machine can non-deterministically
choose an assignment in each state of the underlying
MDP and then verify its consistency by checking each
allowed tuple of each relation of the current CSP. Thus
the number of tuples to be checked is still polynomial
in |X | × |S|.

To show that solving a MaCSP helps to solve an-
other np-complete problem, one can show that solving
an MaCSP is equivalent to solve a DCSP where changes
between two CSP are the same whatever assignment
chosen and transition probability is one.

In fact we assume that, as in Markov Decision Pro-
cesses, state space, action space and transition function
are given and then we will just have to verify if actions
are consistant with constraints which is linear in size of
A. Unfortunately, the practical problem associated to
it is not as simple as stated above and we can conjecture
that solving this problem is harder than it seems to be.
In fact, we have to find all the solutions of a CSP in
each state of the MDP to get the action space and this
is already a #p-complete problem. However, we intend
that this framework aims to reduce branching factor by
action pruning, but do not aim to be applied to huge
instances of dynamic CSPs.

Algorithms Combination
As MaCSPs mixes a MDP and a CSP, two approaches
for which different algorithms have been proposed, we
have elaborated an algorithm (as depicted in Alg. 1)
which uses efficient existing techniques developed in
those contexts. Precisely, we chose a real-time dynamic
programming (rtdp) approach for the Markovian as-
pect of MaCSPs since it is considered as the most ef-
fective both in time and in quality. In fact, rtdp-class

Algorithm 1 Focused RTDP for MaCSPs
1: function initNode(s):
2: //Implicitly called the first time each state s is touched
3: (s.L, s.U)← (HL,HU); s.prio← ∆(s)
4: end function

5: function frtdp(s0, ε,HL,HU ,D0,kD):
6: D ← D0

7: while s0.U − s0.L > ε do
8: (qp, np, qc, nc)← (0, 0, 0, 0)
9: trialRecurse(s0,W = 1,d = 0)

10: if (qc/nc) > (qp/np) then D ← kDD
11: end while
12: end function

13: function trialRecurse(s, W , d):
14: (a∗, s∗, δ)← backup(s)
15: trackUpdateQuality(δW, d)
16: if ∆(s) 6 0 or d > D then return
17: trialRecurse(s∗,γT a∗

s,s∗W ,d + 1)
18: backup(s)
19: end function

20: function trialUpdateQuality(q, d):
21: if d > D/kD then
22: (qc, nc)← (qc + q, nc + 1)
23: else (qp, np)← (qp + q, np + 1)
24: end function

25: function backup(si):
26: Ai ← bucketElimination(si)
27: si.L← max

a∈Ai

QL(si, a)

28: u← max
a∈Ai

QU(si, a)

29: a∗ ← sup
a∈Ai

QU(si, a)

30: δ ← |si.U − u|
31: si.U ← u
32: p← max

si+1∈S
γT a∗

si,si+1
si+1.prio

33: s∗ ← sup
si+1∈S

γT a∗

s,si+1
si+1.prio

34: si.prio← min(∆(si), p)
35: return (a∗, s∗, δ)
36: end function

37: function ∆(s):
38: return |s.U − s.L| − ε/2
39: end function

40: function QL(s, a):
41: return R(s, a) + γ

∑
s′∈S γT a

s,s′s
′.L

42: end function

43: function QU(s, a):
44: return R(s, a) + γ

∑
s′∈S γT a

s,s′s
′.U

45: end function

algorithms are shown to converge to the optimal policy.
We found in the literature several derivative versions
of rtdp algorithms. We chose Focused rtdp (frtdp)

developed by Smith & Simmons (2006) which is cur-
rently, according to the authors, the most efficient, and
which principally uses two bounds. The use of a lower
bound offers guarantees in terms of value, and the upper
bound guides efficiently the search. Moreover, CSP’s
objective functions easily model lower bounds in plan-
ning problems. Thus, those kinds of algorithms can be
also improved by CSP methods.

Concerning the constrained aspect, we use a bucket
elimination procedure (line 26) that allows reducing the
branching factor by selecting only feasible actions in a
given state. Bucket elimination is essentially a method
that propagates constraints applied on a variable of
a CSP to the domain of the other variables involved
in these constraints, and then eliminates the variable.
Once all but one variables have been eliminated, a back-
ward propagation on eliminated variables gives the set
of all solutions. For details on bucket elimination, refer
to (Dechter, 2003, chap. 13.3.3).

As in all rtdp-class, frtdp’s execution consists in
trials (line 17) that begin in a given initial state s0

and then explore reachable states of the state space,
selecting actions according to an upper bound. Once
a final state is reached, it performs backups (line 18)
on the way back to s0. Backups consists essentially in
Bellman updates which are applied on each bound (line
27, 28), on the priority of the state (line 32) and on
the quality of the trial: the larger is the update on the
upper bound, the better is the quality (line 30). This
function returns the currently optimal action based on
the upper bound, the next state to explore based on the
priority and the quality of the backup.

As previously stated, frtdp maintains a lower bound
and uses a priority criterion (line 32) to select actions
outcomes and to detect trial termination. The lower
bound is used to establish the policy and it also con-
tributes in the priority calculation of states to expand
on the fringe of the search tree (line 34). Trial termi-
nation detection has been modified and improved by
adding an adaptive maximum depth D (line 16) in the
search tree in order to avoid over-committing to long
trials early on. Indeed, the maximum depth D is length-
ened (line 22) each time the trial is not useful enough.
This usefulness is represented by δW where δ measures
how much the update changed the upper bound value
of s and W the expected amount of time the current
policy spends in s, adding up all possible paths from s0

to s. Refer to the pseudo-code of Alg. 1 and to Smith &
Simmons’ paper (Smith & Simmons, 2006) for details.

Experimental Results
A typical class of problems that can be solved by
MaCSP are the dynamic, constrained and unreliable re-
source allocation problems. A number of different tasks
must be achieved and actions consist in assigning vari-
ous resources at different times to each of these tasks.
Moreover, there are constraints on the resources, like
time constraints, limited amount and interactions be-
tween those resources. Furthermore, these resources are

unreliable in the sense that some of them are more ef-
fective when assigned to specific tasks and consequently
probabilities are attached to their capacity to achieve
tasks. In this case, the objective is to maximize over the
temporal horizon the probability to achieve each task
while respecting given constraints.

MaCSP is particularly suited for this problem since
it involves stochasticity in actions that correspond to
assignment of resources to tasks. Moreover, constraints
on resources can easily be modeled in this framework
using CSP. In a classical MDP, all constraints must be
hard coded in states and hence will increase the state
space while preventing constraints from evolving along
time line. MaCSPs offer both the control on events via
Markov processes and expressiveness via CSPs without
exploding complexity (see theorem 2).

A typical example of this class of problems is the
Dynamic Weapon-Target Allocation (DWTA) problem
described by Hosein, Athans, & Walton (1988) which
has been shown to be np-complete (Lloyd & Witsen-
hausen, 1986) even in the static unconstrained case.

The DWTA problem on which we experiment our al-
gorithm is described as follows: Consider a naval plat-
form attacked by a set M of m threats. This platform
owns a set W of w weapons with limited ammunitions
to defend itself on a finite temporal horizon T . Thus its
objective is to survive the attack by destroying threats
with its weapons. Unfortunately, weapons are unreli-
able and weapon wi have a probability pt

ij to destroy
threat mj at time t ∈ {0, ..., T}. As a result, the prob-
lem can be formally described by:

Maximize :
T∑

t=1

m∑
i=1

1−
w∏

j=1

(1− αt
ijp

t
ij)

under αt

ij ∈ {0, 1} and
m∑

i=1

w∑
j=1

αt
ij = 1

t ∈ {1, ..., T}
where αt

ij = 1 represents the assignation of weapon wi

on threat mj . The solution thus consists in a sequence
of assignments of αt

ij for each t ∈ {1, ..., T}.

C1: A weapon must “see” the target (cf. table 2)

C2: A ML must be guided by a STIR from fire
time to interception time,

A Gun must use a STIR at fire time,

C3: Two STIRs cannot target the same threat.

Table 1: Examples of DWTA constraints

Moreover, the time for a weapon to intercept a threat
depends on the range, the type and the speed of the
threat and weapons also cannot freely fire at threats.
Some constraints apply depending on their incoming az-
imut and their distance from the platform. In our exam-
ple, we consider that the platform is equipped with two

Separate & Track Illumination Radar (STIR), two Mis-
sile Launchers (ML), a mid-ranged Gun and a Close-In
Weapon System (CIWS). To ease example understand-
ing all threats are assume to be the same type but with
different starting range and speed2. The table 1 de-
scribes how weapons are constrained and table 3 what
their probabilities of success are.

0
10 20

30
40

50

60

70

80

90

100

110

120

130
140

150
160170

180
190200

210
220

230

240

250

260

270

280

290

300

310
320

330
340 350

Base State 0 to 360◦ 1 STIR, 1 Gun,
1 CIWS, 2 MLs

Sector Angles Difference from base state

A � 350 to 10◦ No CIWS

B 10 to 60◦ No difference – Base state

C � 60 to 120◦ An additional STIR

D 120 to 150◦ No difference – Base state

E � 150 to 210◦ No Gun

F 210 to 240◦ No difference – Base state

G � 240 to 300◦ An additional STIR

H 300 to 350◦ No difference – Base state

Table 2: Examples of DWTA constraints: Blind zones

Weapon Range Probability of success

ML From 2.2 to 20km 95%

Gun From 1.5 to 5km 50%

CIWS From 0.2 to 2km 30%

Table 3: Examples of DWTA outcomes of actions

In this application, we chose weapons as variables of
the underlying DCSP and threats as values since con-

2Threats speed is assume to remain constant all over an
episode.

straints are mainly between weapons. The constraint
network is trivial but is complex enough to prune the
search and offers a gain versus a classical Markov De-
cision Process. Figure 1 shows the initial CSP and
how it may evolve during an episode: There exists
unary constraints that specify which threats are reach-
able regarding their distance from platform and the
range of weapon, and binary constraints that bind fir-
ing weapons to STIRs depending on threats STIRs can
“see”.

2

t0 t5 t10 t15

Mis1

Mis2

Gun

CIWS

STIRa

STIRb

1

1

1

2

1

1

3

1

1 3

1

2

2

Mis2

Gun

CIWS

STIRa

STIRb

Mis1

Mis2

Gun

CIWS

STIRa

STIRb

Mis1

Mis2

Gun

CIWS

STIRa

STIRb

Mis1

t0 t11t8

Threat 1 Threat 2 Threat 3

Figure 1: Example of a plan and the DCSP evolution
during an episode

We then compare our framework to a classical MDP
by specifying that actions that are not feasible have a
null probability of success (e.g. a ML which fire to a
too far target will never succeed): results in figure ??
show that MaCSP reduces the number of backups made
and thus the policy computational time. Results were
obtained with a frtdp algorithm with the worst lower
and upper bounds3.

Tendency in figure 2 shows that MDP computation is
exponential in number of actions and also in number of
tasks as it could be forecast. As a consequence, MaCSP
which prunes useless actions has an exponential gain
over the classical MDP. In a same way, as the branching
factor depends on the number of actions, the number of
backups (Figure 3) that frtdp needs to converge with
bad heuristics is also exponentially reduced. Results
for four tasks and over with Markov Decision Processes
were not obtainable due to lack of memory space.

3Null lower bound in every state except in goal states
and the upper bound is computed as if actions were deter-
ministic.

 10

 100

 1000

 10000

 100000

 1e+006

 1 2 3 4 5 6 7 8

T
im

e
(m

s)

Number of Tasks

MaCSP
MDP

Figure 2: Time (ms) vs # Tasks

 1

 10

 100

 1000

 10000

 1 2 3 4 5 6 7 8

N
um

be
r

of
 B

ac
ku

ps

Number of Tasks

MaCSP
MDP

Figure 3: # Backups vs # Tasks

Discussion & Further Work

This paper proposed a useful framework which com-
bines Markovian Decision Processes and Constraints
Satisfaction Problems. We studied the complexity of
this model, proposed a simple algorithm to solve it
and gave an example of application. Objectives of this
approach have been to model actions space reduction
due to environmental constraints and then reduce the
branching factor of the state space in order to facili-
tate the search of optimal policies with efficient algo-
rithms like the Real-Time Dynamic Programming fam-
ily (Bonet & Geffner, 2003; McMahan, Likhachev, &
Gordon, 2005; Smith & Simmons, 2006).

Nonetheless, it has some drawbacks: the action space
of a MaCSP with x constrained variables which have
each a domain of size d is in O(xd) which is obviously
exponential in size of the domains. Thus, in the worst
case, if there not enough constraints to prune the action
space it will be as prejudicial to search all the solutions
of this huge CSP, which is a #p-complete problem, as
searching directly a solution with an efficient algorithm
(assuming all actions are feasible but have a null proba-
bility to lead to another state). However, in the average,
a gain may be done.

Regarding further, apart from studying the efficiency
of this framework in some others problems, there are
mainly two future research avenues. First, factored
MDP of Boutilier, Dearden, & Goldszmidt (2000) is a
very well suited framework to apply MaCSP, with con-
straints between state variables, allowing also to prune
non consistent states if a priori knowledge about en-
vironment is available. Some work on framework gen-
eralization has already been made by Pralet, Verfaillie,
& Schiex (2006) where an algebraic framework called
PFU (standing for Plausibility, Feasibility, Utility) that
encompasses MDP, CSP and also Bayesian Networks
and Influence Diagrams has been proposed. However
this framework does not encompass MaCSP since our
framework models the evolution of constraints by al-
lowing constraints between decision variables and state
variables. Studying the consequences of an extension of
PFU in this way could thus be interesting.

The second interesting research avenue is about
Graphical Games Theory proposed by Kearns, Littman,
& Singh (2001). Constraint satisfaction algorithms
were recently applied to solve graphical games by rep-
resenting interactions between agents by constraints.
Graphical Games could lead by the mean of this frame-
work to stochastic graphical games with few efforts.

Nevertheless, some other aspects still have to be stud-
ied in MaCSPs such as optimality criteria, bounds on
error made by adding constraints and existing algo-
rithm convergence. This framework also opens many
research avenues since it combines two well-known tech-
niques where much work has been done in recent years.
Learning and Reinforcement Learning is one example
from the Markovian community; solution reuse and rea-
soning reuse is another example from the dynamic CSP
community.

Acknowledgements
We would like to thank Pascal Tesson for his helpful
comments on complexity results, Gérard Verfaillie and
Cédric Pralet for their comments on the model and re-
viewers for their useful overall suggestions.

References
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Im-

proving the Convergence of Real-Time Dynamic Pro-
gramming. In ICAPS, 12–31.

Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored rep-
resentations. Artificial Intelligence 121(1-2):49–107.

Dean, T., and Kanazawa, K. 1990. A model for reason-
ing about persistence and causation. Comput. Intell.
5(3):142–150.

Dearden, R., and Boutilier, C. 1997. Abstraction and
Approximate Decision-Theoretic Planning. Artificial
Intelligence 89(1–2):219–283.

Dechter, R., and Dechter, A. 1988. Belief Maintenance
in Dynamic Constraint Networks. In AAAI, 37–42.

Dechter, R. 2003. Constraint Processing. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Dolgov, D. A., and Durfee, E. H. 2005a.
Computationally-Efficient Combinatorial Auctions
for Resource Allocation in Weakly-Coupled MDPs.
In AAMAS.

Dolgov, D. A., and Durfee, E. H. 2005b. Stationary
Deterministic Policies for Constrained MDPs with
Multiple Rewards, Costs, and Discount Factors. In
IJCAI.

Fargier, H.; Lang, J.; Martin-Clouaire, R.; and Schiex,
T. 1997. Traitement de problèmes de décision sous
incertitude par des CSPs. Revue d’Intelligence Arti-
ficielle 11(3):375–398.

Fargier, H.; Lang, J.; and Schiex, T. 1996. Mixed Con-
straint Satisfaction: A Framework for Decision Prob-
lems under Incomplete Knowledge. In AAAI/IAAI,
Vol. 1, 175–180.

Fowler, D. W., and Brown, K. N. 2003. Branching Con-
straint Satisfaction and Markov Decision Problems
compared. Annals of Operation Research 118:85–100.

Guestrin, C.; Koller, D.; and Parr, R. 2001. Multiagent
planning with factored mdps. In NIPS, 1523–1530.

Haralick, R. M.; Davis, L. S.; Rosenfeld, A.; and Mil-
gram, D. L. 1978. Reduction Operations for Con-
straint Satisfaction. Information Sciences 14(3):199–
219.

Hosein, P.; Athans, M.; and Walton, J. 1988. Dynamic
Weapon-Target Assignment Problems with Vulnera-
ble C2 nodes. In Proceedings of the 1988 Command
and Control Symposium, 240–245.

Kearns, M. J.; Littman, M. L.; and Singh, S. P. 2001.
Graphical models for game theory. In UAI, 253–260.

Lloyd, S. P., and Witsenhausen, H. S. 1986. Weapons
allocation is np-complete. In Proceedings of the 1986
Summer Computer Simulation Conference.

McMahan, H. B.; Likhachev, M.; and Gordon, G. J.
2005. Bounded Real-Time Rynamic Programming:
RTDP with Monotone Upper Bounds and Perfor-
mance Guarantees. In ICML, 569–576.

Papadimitriou, C., and Tsisiklis, J. N. 1987. The Com-
plexity of Markov Decision Processes. Math. Oper.
Res. 12(3):441–450.

Pralet, C.; Verfaillie, G.; and Schiex, T. 2006. De-
cision with Uncertainties, Feasibilities, and Utilities:
Towards a Unified Algebraic Framework. In ECAI,
427–431.

Shazeer, N. M.; Littman, M. L.; and Keim, G. A.
1999. Solving Crossword Puzzles as Probabilistic
Constraint Satisfaction. In AAAI/IAAI, 156–162.

Smith, T., and Simmons, R. G. 2006. Focused Real-
Time Dynamic Programming for MDPs: Squeezing
More Out of a Heuristic. In AAAI/IAAI.

Sutton, R. S.; Precup, D.; and Singh, S. P. 1999.
Between MDPs and Semi-MDPs: A Framework for
Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112(1-2):181–211.

Verfaillie, G., and Jussien, N. 2005. Constraint Solving
in Uncertain and Dynamic Environments: A Survey.
Constraints 10(3):253–281.

Walsh, T. 2002. Stochastic Constraint Programming.
In Proceedings of the 15th ECAI., volume 8. IOS
Press.

