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Abstract

Conditional Temporal Problems (CTPs) allow for the repre-
sentation of temporal and conditional plans, dealing simul-
taneously with uncertainty and temporal constraints. In this
paper, CTPs are generalized to CTPPs by adding preferences
to the temporal constraints and by allowing fuzzy thresholds
for the occurrence of some events. The usual consistency no-
tions (strong, weak and dynamic) are then extended to en-
compass the new setting, and their corresponding testing al-
gorithms are provided. We show that the complexity of the
algorithms does not increase w.r.t. their classical counterparts
for CTPs. We also show that our framework generalizes STP-
PUs as well, another temporal framework with uncertainty
and preferences. This means that controllability in STPPUs
can be translated to consistency in CTPPs, indicating a strong
theoretical connection among the two formalisms.

Introduction

Many systems and applications need to be able to reason
with alternative situations, plans, contexts and to know what
holds in each of them. Moreover, they may have to set tem-
poral constraints on events and actions. Conditional Tempo-
ral Problems (CTPs) (Tsamardinos, Vidal, & Pollack 2003)
are a formalism that allows for modeling conditional and
temporal plans which deal with the uncertainty arising from
the outcome of observations and with complex temporal
constraints. In CTPs the usual notion of consistency is re-
placed by three notions, weak, strong and dynamic consis-
tency, which differ on the assumptions made on the knowl-
edge available.

Another class of temporal reasoning problems that deals
with similar scenarios are Simple Temporal Problems with
Uncertainty (STPUs) (Vidal & Fargier 1999). In such prob-
lems the uncertainty lies in the lack of control the agent has
over the time at which some events occur. Such events are
said to be controlled by “Nature”. In STPUs consistency is
called controllability and, similarly to CTPs, there are three
notions, weak, strong and dynamic controllability, based on
different assumptions made on the uncontrollable variables.
Despite the fact that consistency in CTPs and controllability
in STPUs appear similar, their relation has not been formally
investigated.
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Furthermore, in rich application domains it is often neces-
sary to handle not only temporal constraints and conditions,
but also preferences over the execution of actions. Pref-
erences have been added to STPUs in (Rossi, Venable, &
Yorke-Smith 2006); in addition to expressing uncertainty,
in STPPUs contingent constraints can be soft, meaning that
different preference levels are associated to different dura-
tions of events.

In this paper we introduce the CTPP model, an exten-
sion of CTPs which adds preferences to the temporal con-
straints and generalizes the simple Boolean conditions to
fuzzy rules; these rules activate the occurrence of some
events on the basis of fuzzy thresholds. Moreover, also
the activation of the events is characterized by a preference
function over the domain of the event. This provides an ad-
ditional gain in expressiveness, allowing one to model the
dynamic aspect of preferences that change over time.

Quantitative temporal constraint problems have been used
for many applications in practice, ranging from space ap-
plications (MAPGEN (Ai-Chang et al. 2004)) to temporal
databases (Combi & Pozzi 2006) and personal assistance
(Autominder, (Pollack et al. 2003)). We expect CTPPs to
be useful in all of the above.

After defining CTPs with fuzzy preferences, we extend all
the consistency notions of CTPs. Moreover, we provide al-
gorithms for testing such new notions which are in the same
complexity class as their classical counterparts. Finally, we
show how the STPPUs are related to CTPPs by providing a
mapping from STPPUs to CTPPs (and thus also from STPUs
to CTPs) which preserves the controllability/consistency no-
tions. In particular, such a mapping proves that CTPPs are
a more expressive model. All proofs have been omitted for
lack of space.

Background

STPs and STPPs. A Simple Temporal Problem (STP)
(Dechter, Meiri, & Pearl 1991) is defined as a set of variables
V , each of which corresponds to an instantaneous event, and
a set E of constraints between the variables. The constraints
are binary and are of the form lij ≤ xi − xj ≤ uij with
xi, xj ∈ V and lij , uij ∈ ℜ; lij and uij are called the bounds
of the constraint.

Preferences have been introduced in STPs by (Khatib et
al. 2001), defining Simple Temporal Problems with Pref-



erences (STPPs). In particular, a soft temporal constraint
< I, f > is specified by means of a preference function on
the interval, f : I → [0, 1], where I = [lij , uij ]. An STPP
is said to be consistent with preference degree α if there ex-
ists an assignment of its variables that satisfies all constraints
and that has preference α. The preference of an assignment
is obtained by taking the minimum of the preferences given
by each constraint to the projection of the assignment onto
its variables. An optimal solution is one such that there is no
other solution with higher preference. Such a solution ca be
found in polynomial time (Khatib et al. 2001).

STPUs and STPPUs. STPUs (Vidal & Fargier 1999) are
STPs in which the temporal constraints are divided in two
classes: those representing durations under the control of the
agent (called requirement constraints) and those represent-
ing durations decided by “Nature” (called contingent con-
straints). Such a partition induces a similar partition over
the variables. In (Rossi, Venable, & Yorke-Smith 2006)
STPUs are extended to preferences by replacing STP con-
straints with soft temporal constraints. Thus an STPPU is a
tuple < Ne, Nc, Lr, Lc > where Ne is the set of executable
timepoints, Nc is the set of contingent timepoints, Lr is a
set of soft requirement constraints, and Lc is a set of soft
contingent constraints. The notions of controllability of ST-
PUs are extended to handle preferences. Here we focus on
two of such notions. An STPPU is said to be α-strongly
controllable is there is a fixed way to assign the values to the
variables in Ne such that whatever Nature will choose for the
variables in Nc the resulting assignment is either optimal (if
Nature’s choice prevents from achieving preference level α)
or it has preference α. Optimal weak controllability simply
requires the existence of an optimal way to assign values to
the variables in Ne given an any assignment to those in Nc.

CTPs. CTPs (Tsamardinos, Vidal, & Pollack 2003) ex-
tend temporal constraint satisfaction problems (Dechter,
Meiri, & Pearl 1991) by adding observation variables and
by conditioning the occurrence of some events on the pres-
ence of some properties of the environment. A CTP is a
tuple < V,E,L,OV,O,P > where P is a set of Boolean
atomic propositions, V is a set of variables, E is a set
of temporal constraints between pairs of variables in V ,
L : V → Q∗ is a function attaching conjunctions of lit-
erals in Q = {pi : pi ∈ P} ∪ {¬pi : pi ∈ P} to each
variable in V , OV ⊆ V is the set of observation variables,
and O : P → OV is a bijective function that associates
an observation variable to a proposition. The observation
variable O(A) provides the truth value for A. In V there is
usually a variable denoting the origin time, set to 0. In this
paper this variable will be denoted by x0. Thus, in CTPs,
variables are labelled with conjunctions of literals, and the
truth value of such labels are used to determine whether vari-
ables represent events that are part of the temporal problem.
In this paper we consider only CTPs where E contains only
STP constraints. In a CTP, for a variable to be executed, its
associated label must be true. The truth values of the propo-
sitions appearing in the labels are provided when the corre-

sponding observation variables are executed. The constraint
graph of a CTP is a graph where nodes correspond to vari-
ables and edges to constraints. Nodes v is labeled with L(v)
and edge c is labeled with the interval of constraint c. Labels
equal to true are not specified. An execution scenario s is
a conjunction of literals that partitions the set of variables in
two subsets: the subset of the variables that will be executed
because their label is true given s, and the subset of the other
variables, that will not be executed. SC is the set of all sce-
narios. Given a scenario s, its projection, Pr(s), is the set
of variables that are executed under s and all the constraints
between pairs of them. Pr(s) is a non-conditional temporal
problem.

Figure 1 shows an example inspired from (Tsamardinos,
Vidal, & Pollack 2003). The example is about a plan to
go skiing at station Sk1 or Sk2, depending on the condi-
tion of road R. Station Sk2 can be reached in any case,
while station Sk1 can be reached only if road R is acces-
sible. If Sk1 is reachable, we choose to go there. More-
over, temporal constraints limit the arrival times at the ski-
ing station. The condition of road R can be assessed when
arriving at village W . In the figure, variables XYs and
XYe represent the start and the end time for the trip from
X to Y . Node O(A), where A = “road R is accessi-
ble” is HWe. There are two scenarios, A on variables
{x0,HWs,HWe,WSk1s,WSk1e} and ¬A on variables
{x0,HWs,HWe,WSk2s,WSk2e}.

Figure 1: Example of Conditional Temporal Problem.

In CTPs there are three different notions of consistency
depending on the assumptions made about the availability
of observation information:

• Strong Consistency (SC). Strong consistency applies
when no information is available. A CTP is strongly
consistent if there is a fixed way to assign values to all
the variables so that all constraints are satisfied indepen-
dently of the observations. A CTP is strongly consistent
if and only if its non-conditional counterpart is consistent.
Therefore, an algorithm to check SC of a CTP takes the
same time as checking the consistency of an STP, which
is polynomial.

• Weak Consistency (WC). Weak consistency applies when
all information is available before execution. A CTP
is weakly consistent if the projection of any scenario is
consistent. Checking WC is a co-NP complete problem



(Tsamardinos, Vidal, & Pollack 2003). A brute force al-
gorithm to check WC can check the consistency of all
projections, possibly exploiting equivalent scenarios and
shared paths.

• Dynamic Consistency (DC). Dynamic consistency (DC)
assumes that information about observations becomes
known during execution. A CTP is dynamically consis-
tent if it can be executed so that the current partial so-
lution can be consistently extended independently of the
upcoming observations.

The CTP depicted in Figure 1 is not DC. In fact, if A
is true then we have to leave home after 10, if A is false we
have to leave home before 8. However, being at village W is
a precondition for the observation of proposition A and this
fact prevents us to observe A before leaving home. There-
fore we cannot distinguish between the two scenarios A and
¬A in time to schedule our departure from home accord-
ingly.

Fuzzifying CTPs

The conditional nature of CTPs is enclosed in the vari-
ables’ labels, whose truth value enables or disables the pres-
ence of variables in the problem. Such labels indeed act
as rules that select different execution paths, which, given
variable v and its label L(v), can be written as follows:
IF L(v) THEN EXECUTE (v).

The idea of fuzzifying such kind of rules has been already
taken into consideration, for example in the field of fuzzy
control (Lee 1990; Cox 1992). In fact, real world objects
often do not present a crisp membership and classical Log-
ics has difficulties to describe some concepts (e.g. “tall”,
“young”, et.c.). Another problem is that temporal informa-
tion is often affected by imprecision or vagueness.

In a general study of such rules (Dubois & Prade 1996),
both the premise and the consequence of the rule have been
equipped with truth degrees associated with them. We will
do the same for CTP’s rules.

In our case, however, these two degrees have different
meanings: the degree of the premise is used to establish if
the variable should be executed, and therefore provides a
truth value; the degree of the consequence, instead, can be
considered as a preference on the execution of the variable.

Boolean propositions were justified in CTPs, where labels
were evaluated in a crisp way, but in CTPPs they would re-
duce the expressiveness of the fuzzy rules; for this reason
CTPPs will be equipped with a set P of fuzzy atomic propo-
sitions and a set of fuzzy literals Q = {pi : pi ∈ P}∪{¬pi :
pi ∈ P} which are mapped to values from [0, 1] by an inter-
pretation function.

Definition 1 (Interpretation function). An interpretation
function is a function deg : W ⊆ Q → [0, 1], where l ∈ W
iff ¬l ∈ W and ∀l ∈ W , deg(¬l) = 1 − deg(l).

The rules we will use to fuzzify CTPs are of the form

IF pt(L(v), deg) > α THEN EXECUTE (v) : cp(minL(v, deg))

where L(v) ∈ Q∗ is the “fuzzy” label of variable v, deg is
an interpretation function, function pt gives the truth degree

of L(v) given deg, and cp is the preference function associ-
ated with the consequence. The set of all “truth-preference”
fuzzy rules will be named FR.

To interpret a conjunction of fuzzy literals, given an in-
terpretation deg, it is natural to take their minimum de-
gree, as usual in conjunctive fuzzy reasoning. Thus function
pt : Q∗ → [0, 1] will be the min operator.

Definition 2 (pt function). Let L(v) = ∧i=1,...,nli, v ∈ V ,
li ∈ W ⊆ Q, and deg : W → [0, 1], then pt(L(v), deg) =
min{deg(l1), . . . , deg(ln)}.

For example, a fuzzy proposition A representing sentence
“It is hot” can be true with different degrees. We could say
it is true with degree deg(A) = 0.4 if the outside tempera-
ture is mild, and with degree deg(A) = 0.8, if the outside
temperature is above 80F . Similarly a fuzzy proposition B
representing sentence “I’m thirsty” can reasonably have dif-
ferent truth degrees. We can imagine attaching to a variable
v, representing the time at which we go buy a cold drink, la-
bel L(v) = AB. This will allow us to construct a rule for v
which will activate variable “get cold drink” only if the heat
level or the thirst are above a given threshold.

Since we will always use the above function pt, each rule
can be characterized by its threshold and its preference func-
tion. Thus we will sometimes denote a rule via the notation
r(α, cp).

Each fuzzy rule states that variable v is part of the prob-
lem if value pt(L(v), deg) is greater than the threshold α.
Moreover, the consequence specifies the preference associ-
ated with the execution of v. In general, such a preference
can depend on the truth degree of the premise and on the
time at which v is executed. Therefore, it is reasonable to
define cp : [0, 1] → (ℜ+ → [0, 1]), that is, as a function
which takes in input the truth degree of the premise, i.e.,
pt(L(v), deg), and returns a function which, in turn, takes
in input an execution time and returns a preference in [0, 1].

In other words, function cp allows us to give a prefer-
ence function on the execution time of v which depends on
the truth degree of the label of v. However, this also al-
lows us to model situations where the preference function
for the activation of v is independent of the truth degree of
the premise, as a special case in which function cp has type
cp : ℜ+ → [0, 1]. This restricted kind of rules will be named
r-cp.

In CTPs, a variable without a label implicitly has a label
with value true. Similarly, in the fuzzy extension we con-
sider, any variable whose associated rule is not specified has
the following implicit one: IF true THEN EXECUTE (v) :
1. This means that variable v is always present in the prob-
lem, and its execution has preference 1 independently of the
execution time.

Definition 3 (CTPP). A CTPP is a tuple <
V,E,L,R,OV,O,P > where:

• P is a finite set of fuzzy atomic propositions with truth
degrees in [0, 1];

• V is a set of variables;

• E is a set of soft temporal constraints between pairs of
variables vi ∈ V ;



• L : V → Q∗ is a function attaching conjunctions of fuzzy
literals Q = {pi : pi ∈ P} ∪ {¬pi : pi ∈ P} to each
variable vi ∈ V ;

• R : V → FR is a function attaching a “truth-preference”
fuzzy rule r(αi, cp) to each variable vi ∈ V ;

• OV ⊆ V is the set of observation variables;

• O : P → OV is a bijective function that associates an ob-
servation variable to each fuzzy atomic proposition. Vari-
able O(A) provides the truth degree for A.

As explained above, the execution of a variable v ∈ V
depends on the evaluation of the fuzzy rule associated with
it. A value assigned to a variable v ∈ V represents the time
at which the action represented by v is executed; this value
will be also written as T (v). If v is an observation variable
it also represents the time at which the truth degree of the
observed proposition is revealed.

Once a CTPP is defined, it is advisable to check statically
if the information on labels and rules is consistent similarly
to what is done in CTPs. In particular, if a variable v is
executed, all the observation variables of the propositions in
its label L(v) must have been executed before v. In CTPs
this is tested by checking if for each v ∈ V and for each
proposition A ∈ L(v), L(v) ⊇ L(O(A)) and T (O(A)) <
T (v), where O(A) is the observation node of proposition A.

In the fuzzy case, where conjunction is replaced by min-
imum and the truth values of the propositions are in [0, 1],
L(v) ⊇ L(O(A)) has to be augmented with the condition
that the threshold in the rule associated with O(A) should
not be lower than the threshold of the rule associated to v.
More formally:

Definition 4 (Structural Consistency). Let v be a variable of
a CTPP and L(v) its label. A CTPP is structurally consis-
tent if each observation variable, say O(A), which evaluates
a fuzzy proposition A ∈ L(v), is such that L(O(A)) ⊆ L(v)
and α ≥ β, where R(v) = r(α, cp) and R(O(A)) =
r(β, cp′).

Checking the structural consistency of a CTPP can be per-
formed in O(|V |2) since to establish the consistency of the
label of a variable at most O(|V |) labels (and thresholds)
must be considered.

The definitions of scenario, projection, schedule and strat-
egy are analogous to the classical counterparts.

Definition 5 (Scenario). Given an CTPP P with a set of
fuzzy literals Q, a scenario is an interpretation function s :
W → [0, 1] where W ⊆ Q that partitions the variables of
P in two sets: set V1, containing the variables that will be
executed and set V2 containing the variables which will not
be executed. A variable v, with associated rule r(α, cp), is
in V1 iff pt(L(v), s) ≥ α, otherwise it is in V2. S(P ) is the
set of all scenarios of P .

Definition 6 (Partial scenario). A partial scenario is an in-
terpretation function s : W → [0, 1] where W ⊆ Q that
partitions the variables of the CTPP in three sets: set V1,
containing the variables that will be executed, set V2 con-
taining the variables which will not be executed and set V3

containing the variables the execution of which cannot be
decided given the information provided by s. A variable

v, with associated rule r(α, cp) and label L(v), is in V3 iff
L(v) ⊃ W , is in V1 iff pt(L(v), s) ≥ α, otherwise it is in
V2.

Since a scenario chooses a value for each fuzzy literal,
it determines which variables are executed and also which
preference function must be used for their execution. This
means that a scenario projection must contain the executed
variables, the temporal constraints among them, and the in-
formation given by the preference function of each of the
executed variables. This information can be modelled by
additional constraints between the origin of time and the ex-
ecuted variables.

Definition 7 (Constraints induced by a scenario). Given a
(possibly partial) scenario s and a variable v executed in
s, consider its associated rule r(α, f) = R(v). The con-
straint induced by this rule in scenario s is the soft tem-
poral constraint csts(v) defined on variables x0 and v by
(0 ≤ v − x0 < +∞) with associated constraint preference
function f(minA∈L(v)s(A)). The constraints induced by
scenario s are all the constraints induced by variables exe-
cuted in s, that is, U(s) = {csts(v), v executed in s}.

Definition 8 (Scenario projection). Given an CTPP P and
a scenario (or partial scenario) s of P , its projection Pr(s)
is the STPP obtained by considering the set of variables of
P executed under s, all the constraints among them, and the
constraints in U(s). Two scenarios are equivalent if they
induce the same projection.

Definition 9 (Schedule). A schedule T : V → ℜ+ of a
CTPP P is an assignment of execution times to the variables
in V . Given a scenario s and a schedule T , the preference
degree of T in s is prefs(T ) = mincij∈Pr(s)fij(T (vj) −
T (vi)), where fij is the preference function of constraint cij

defined over variables vi and vj . We indicate with T the set
of all schedules.

Given a CTPP P an execution strategy St : S(P ) → T is
a function from scenarios to schedules.

Figure 2 shows an example of CTPP that extends the CTP
in Figure 1. There are three skiing stations: Sk1, Sk2 and
Sk3. A represents the fuzzy proposition “there is no snow”;
station Sk1 is the least accessible, so it is reachable only
if A is at least 0.8; on the other hand, station Sk3 has the
most reliable roads, so it is accessible when A is above 0.3;
station Sk2 has intermediate reachability conditions, so it
is accessible for values of A above 0.5. At the same time,
however, the higher the snow, the more preferable it is to
go skiing. For this reason, the cp functions of the rules are
“inversely” proportional to the truth degree of observation
A. For example, this function could be cp(x) = (1 − x).
The two temporal constraints of the original example from
x0 to WSk1e and to WSk3e have been fuzzyfied by us-
ing trapezoidal preference functions. The preference func-
tions for the other constraints have been omitted, mean-
ing that they are constant functions always returning 1.
In this example there are four distinct scenarios, given by
s1(A) = 1, s2(A) = 0.8, s3(A) = 0.5, and s4(A) = 0.3.
Thus projection Pr(s1) is the STPP defined on variables
x0,HWs,HWe,WSk1s,WSk1e, projection Pr(s2) is



Figure 2: Example of Conditional Temporal Problem with
Preferences.

the STPP over variables x0,HWs,HWe,WSk2s,WSk2e,
projection Pr(s3) is the CTPP over Sx0,HWs,HWe,
WSk3s,WSk3e, and projection Pr(s4) is the STPP over
x0,HWs,HWe.

Consistency notions in CTPPs

Consistency notions in CTPPs are analogous to the ones in
CTPs. However, we now have to consider also the prefer-
ences. There are again three notions of consistency depend-
ing on the assumptions made about the availability of the
uncertain information.

Definition 10 (α-Strong Consistency). A CTPP is α-
strongly consistent if there is a viable execution strategy St
such that, for every scenarios s1 and s2, and variable v exe-
cuted in both,

1. [St(s1)](v) = [St(s2)](v);

2. the global preference of St(s1) and of St(s2) is at least
α.

In words, to be α-strong consistent, we must have a sched-
ule that satisfies all the constraints independently of the ob-
servations, giving a global preference greater than or equal
to α. This is the strongest consistency notion since it re-
quires the existence of a single schedule that gives prefer-
ence at least α in every scenario. On the contrary, we can
just require the existence for every scenario of a schedule
(possibly a different one for different scenarios) that has a
preference of at least α given the corresponding projection.
This notion is that of α-weak consistency.

Definition 11 (α-Weak Consistency). A CTPP Q is said α-
weakly consistent (α-WC) if, for every scenario s ∈ S(Q),
Pr(s) is consistent in the STPP sense with preference de-
gree at least α.

The above definitions are at the two extremes w.r.t. as-
sumptions made on which events will be executed: α-SC
assumes no knowledge at all, while α-WC assumes the sce-
nario is given. A notion consistency which lies in between is
α-dynamic consistency which assumes that the information
on which variables are executed becomes available during

execution in an on-line fashion. In order to define it, we first
need to recall the concept of observation history from CTPs
and say when a partial scenario and a scenario are consistent.

Definition 12 (Observation History). Given a scenario s
and a schedule T , for each variable v we define the obser-
vation history of v w.r.t schedule T and scenario s as the
set H(v, s, T ) containing the observations performed before
time T (v).

Definition 13 (Cons(s,w)). Given a CTPP P and scenario
s we say a partial scenario w is consistent with s, writ-
ten Con(s, w) if: STPP Pr(w) is a sub-problem of STPP
Pr(s), in the sense that the set of variables (resp. con-
straints) of Pr(w) is a subset of the set of variables (resp.
constraints) of Pr(s) and no variable executed given s is
not executed given w.

This last definition extends the one given in the classical
case, where it is sufficient to say that a partial assignment
is consistent with a scenario if the variables executed by the
partial assignment are a subset of those executed by the sce-
nario. We will use this notion in the definition of α-Dynamic
Consistency, to express when at a given time the set of ob-
servations collected at that time is consistent with a scenario.

Definition 14 (α-Dynamic Consistency). A CTPP is said
α-dynamically consistent if there exists a viable ex-
ecution strategy St such that ∀v and for each pair
of scenarios s1 and s2 [Con(s2,H(v, s1, St(s1))) ∨
(Con(s1,H(v, s2, St(s2))))] ⇒ [St(s1)](v) = [St(s2)](v)
and the global preferences of St(s1) and St(s2) are at least
α.

In words, a CTPP is α-DC if for every variable v,
whenever two scenarios (s1 and s2) are not distinguishable
at the execution time for v (Con(s2,H(v, s1, St(s1))) ∨
(Con(s1,H(v, s2, St(s2)), there is an assignment to v
([St(s1)](v) = [St(s2)](v)]) which can be extended to a
complete assignment which in both scenarios will have pref-
erence at least α.

It is easy to see that, as for CTPs, α-SC ⇒ α-DC ⇒
α-WC. Moreover, given α ∈ [0, 1], if an CTPP is α-
SC/DC/WC then it is β-SC/DC/WC ∀β ≤ α.

In what follows we consider a property which is common
to all three the consistency notions. In order to do so we con-
sider a subclass of CTPPs characterized by a special type of
truth-preference rules. We will then show that the consis-
tency of general CTPPs is equivalent to the consistency of a
related problem in such a subclass.

CTPPs with restricted rules. We start by considering a
simplified case, that is, when the preference functions of
the rules are independent of the truth degree of the label
pt(L(v), deg). In such a case, given rule r(α, f), we assume
that f is an r-cp function. CTPPs with such a restriction will
be denoted by R-CTPPs.

The preference information given by f can be equiva-
lently expressed by adding a constraint between the origin
of time x0 and the variable to which rule r is associated.
More precisely, the constraint induced by v is the soft tem-
poral constraint cst(v) defined on variables x0 and v by
(0 ≤ v − x0 < +∞) with associated preference function



minα∈[0,1]f(α). The constraints induced by a whole CTPP
Q are all the constraints induced by the variables of Q, that
is, U(Q) = {cst(v), v variable of Q}.

In the specific case of an R-CTPP Q, the preference func-
tion of each constraint in U(Q) will just be f(α), since in
this case f does not depend on the truth value of the propo-
sitions in the premise of the rule.

Theorem 1. Given a CTPP Q =< V,E,L,R,OV,O,P >,
let us define a function R′ from R as follows: if R(v) =
r(α, f), then R′(v) = r(α, f ′) where f ′ = minβ∈[0,1]f(β).
Then Q′ =< V,E,L,R′, OV,O,P > is an R-CTPP. More-
over, Q is α-SC/DC/WC if and only if Q′ is α-SC/DC/WC.

Testing consistency of CTPPs

Thanks to Theorem 1, when testing the consistency of a
CTPP we can restrict ourselves to testing the consistency
of its related R-CTPP without loss of generality.

Testing α-SC

The algorithm we propose to test the α-SC of an R-CTPP
is based on the correspondence of the α-SC of the R-CTPP
and the consistency preference degree of a related STPP.

Theorem 2. Given an R-CTPP M =<
V,E,L,R,OV,O,P >, let E′ = E ∪ U(M). Then
M is α-strongly consistent if and only if the STPP
< V,E′ > is consistent with preference degree α.

Theorem 2 relates the α-SC of an R-CTPP to the consis-
tency level of an STPP. This allows us to check the α-SC of
an R-CTPP by just constructing the appropriate STPP and
then finding its best level of consistency. This will give us
the highest level α at which the R-CTPP is α-SC. Since,
under some tractability assumptions, solving a fuzzy STPP
can be done in polynomial time (Khatib et al. 2001), U(Q)
contains O(|V |) constraints, the procedure takes polynomial
time.

Testing α-Weak Consistency

In classical CTPs, the problem of checking WC is a co-NP
complete problem (Tsamardinos, Vidal, & Pollack 2003).
Therefore, being CTPPs an extension of CTPs, we cannot
expect to do better. The classical algorithm to test the WC
of CTPs checks the consistency of all complete scenarios by
identifying a set of labels LS that covers all the scenarios
(Tsamardinos 2001). As seen in the example in Figure 2,
the scenarios of a CTPP are determined not only by the la-
bels used in the problem, but also by the thresholds levels.
However, in the case of R-CTPPs, the definition of equiva-
lence between scenarios collapses to that for CTPs, that is,
two scenarios are equivalent iff they induce the same par-
tition of the variables. In fact, in R-CTPPs the preference
on the induced constraint is independent of the value of the
observation in the head of the corresponding rule. Thus the
projection of the scenario is fully specified by the set of ex-
ecuted variables.

We first define for each literal l ∈ Q an auxiliary set
M(l) that contains the set of the threshold levels of truth-
preference rules defined on labels containing l. More pre-

cisely: M(l) = {αi : ∃v ∈ V with R(v) = r(αi, cp) ∧ l ∈
L(v)} ∪ {1}.

Given set M(l) for each literal l, we consider scenarios
mapping each literal l into a value in M(l).

Definition 15 (Meta-scenario). Given a CTPP P with set of
fuzzy literals Q a meta-scenario is an interpretation function
ms : (W ⊆ Q) → ∪l∈WM(l) such that ms(l) ∈ M(l),
∀l ∈ W . We will denote the set of meta-scenarios as
MS(P ) ⊂ S(P ).

Given the equivalence relation defined on R-CTPP sce-
narios, every scenario s ∈ S(P ) \MS(P ) is equivalent to a
meta-scenario ms ∈ MS(P ).

Theorem 3. Given an R-CTPP P , ∀s ∈ S(P ), ∃ms ∈
MS(P ) s.t. Pr(s) = Pr(ms).

In particular, from the above theorem we can immedi-
ately deduce that a R-CTPP is α-WC if and only if all pro-
jections of meta-scenarios are consistent with optimal pref-
erence level at least α. However, two meta-scenarios in
MS(P ) can be equivalent. In order to further reduce the
set of projections to be considered, we apply a procedure
similar to that proposed in (Tsamardinos, Vidal, & Pollack
2003), in order to find a minimal set of meta-scenarios con-
taining only one meta-scenario for each equivalence class.
We refere to this procedure as Algorithm FST.

Algorithm FST takes in input a set of propositions SL, a
current partial meta-scenario s, the set ExecV ars of vari-
ables which can be executed given the information in s, the
set PV containing the sets of executed variables already
considered, and, finally, the set MS of meta-scenarios se-
lected so far. In output, it gives set of meta-scenarios MS′.
First considers if the set of propositions SL is empty and, if
so, it returns the current set of meta-scenarios MS. Other-
wise, it chooses (in some pre-fixed order) proposition H and
then removes it from SL. Next, for each threshold α (in in-
creasing order) in the set M(H), it extends the current meta-
scenario with assignment H = α and computes the set of
variables ExecV ars which are or could be executed given
the information in s. In more detail, procedure ConsV ars
takes in input a set of variables X , a partial meta-scenario
w, and a CTPP P , and returns the subset of variables of X
containing only variables that in P are associated with a rule
whose head is not false given w (set V1∪V3 according to the
notation of Definition 6).

If set ExecV ars has not been considered before (that is, it
is not contained in set PV ) then, if either all the propositions
in SL have been considered or ExecV ars is empty, then
ExecV ars is added to set PV and the set of meta-scenarios
MS is updated with the new meta-scenario found s. Oth-
erwise, if neither of the above sets are empty the search is
carried on recursively.

In order to find a minimal set of meta-scenarios of an R-
CTPP P with proposition set P , Algorithm FST is called
with SL = P , s = nil1 ExecV ars = V , PV = ∅, MS =
∅.

1We write s = nil meaning the function with the empty do-
main, that is, to model a partial scenario in which no proposition is
assigned.



The key idea of the algorithm is that as we extend a partial
scenario the set of variables that could be executed can only
shrink. Moreover, since for each proposition H the thresh-
olds in M(H) are considered in increasing order, when a set
of executed variables is found, all its subsets have already
been considered and thus if such a set is already in PV the
search can avoid the recursive call.

Theorem 4. Consider an R-CTPP P with proposition set P .
Let MS′ be the set of meta-scenarios returned by Algorithm
FST when called on SL = P , s = nil, ExecV ars = V ,
PV = ∅, MS = ∅. Then:

• ∀s ∈ MS′, s ∈ MS(P );

• ∀s′ ∈ MS(P ), ∃s ∈ MS′ such that Pr(s′) = Pr(s);

• ∀s, s′ ∈ MS′, Pr(s) 6= Pr(s′);

The complexity of Algorithm FST is
O(ΠH∈ mathcalSL|M(H)|) since, in the worst case
the algorithm explores the whole set of meta-scenarios, of
size ΠH∈SL|M(H)|.

example Consider the following R-CTPP with four vari-
ables v1, v2, v3, v4 whose associated rules are R(v1) =
r(0.3, IF A > 0.3 THEN EXECUTE v1 : 1), R(v2) =
r(0.5, IF A > 0.5 THEN EXECUTE v2 : 1), R(v3) =
r(0.2, IF AB > 0.2 THEN EXECUTE v3 : 1), and
R(v4) = r(0.5, IF AB > 0.5 THEN EXECUTE v4 : 1).
In this case M(A) = {0.2, 0.3, 0.5, 1} and M(B) =
{0.2, 0.5, 1}. This problem has 12 meta-scenarios, while the
minimal set is {{A = 0.2}, {A = 0.3, B = 0.2}, {A =
0.5, B = 0.2}, {A = 0.5, B = 0.5}, {A = 1, B =
0.2}, {A = 1, B = 0.5}, {A = 1, B = 1}}.

The algorithm we propose to test α-WC of a R-
CTPPcomputes a minimal set of meta-scenarios applying
Algorithm FST and for each such meta-scenario ms it
checks if the corresponding projection Pr(ms) is consis-
tent at level α. If the preference functions are semi-convex,
in order to test this it is sufficient to test whether the STP ob-
tained from Pr(s) via its α-cut (that is considering for each
constraint the sub-interval containing elements mapped into
a preference ≥ α) is consistent.

If the preference functions are semi-convex the co-
problem of α-WC is NP -complete since it coincides with
deciding if there is an inconsistent STP obtained via the α-
cuts. Thus in such a case testing α-WC is co-NP -complete.

Testing α-Dynamic Consistency

In (Tsamardinos, Vidal, & Pollack 2003) the DC of a CTP
is checked by transforming the CTP into a Disjoint Tempo-
ral Problem (DTP) (Stergiou & Koubarakis 2000) obtained
from the union of the STPs corresponding to the projections
of the scenarios of the CTP and some additional disjunctive
constraints. A CTP is DC if, whenever at certain point in
time a given variable must be executed, and it is not possible
to distinguish in which scenario we are, there is a value to
assign to such a variable which will be consistent with all
the possible scenarios that can evolve in future. This means
that all the variables representing the same CTP variable

in the projections either are constrained to be after obser-
vations which allow to distinguish the scenario univocally
(and thus can be executed independently of each other) or
they must be assigned the same value whenever observation
variables do not allow to distinguish the scenarios. This is
modeled by adding to the STP, obtained by the union of all
the projections of the CTP, a specific set containing disjunc-
tive constraints (called DC constraints). Briefly, each DC-
constraint regarding a variable v requires that in all scenarios
either the execution of v follows that of all the observation
variables of literals in its label, L(v), or, otherwise, that the
occurrences of v are synchronized.

Adding DC constraints makes the STP become a DTP
(see (Tsamardinos, Vidal, & Pollack 2003) for more details).

Since in R-CTPPs executing a variable at the same time in
different scenarios gives the same preference, the reasoning
above can be applied directly. In fact, in terms of synchro-
nization only the temporal order matters.

Theorem 5. Given an R-CTPP Q =<
V,E,L,R,OV,O,P >, let D = 〈V ′, E′〉 be the
fuzzy DTP with V ′ = (

⋃
Pr(s)=(V,E),s∈MS′ V ) and

E′ = (
⋃

Pr(s)=(V,E),s∈MS′ E) ∪ CD. Then Q is α-

dynamically consistent if and only if D is consistent with
preference degree α.

Theorem 5 allows us to define an algorithm which, given
in input an R-CTPP, tests if it is α-DC. Such an algorithm
first computes the minimal set of meta-scenarios by applying
Algorithm FST. Next, it tests if the DTPP obtained taking
the union of the all the STPPs corresponding to projections
of meta-scenarios in the minimal set, and adding the CD
constraints, is consistent with optimal preference level α.
Thus the complexity of checking α-DC is the same as that of
solving a fuzzy DTPP; we recall that efficient algorithms for
finding the optimal preference level of Fuzzy DTPPs have
been considered in (Peintner & Pollack 2004).

CTPPs vs. STPPUs

It is interesting to notice that consistency in CTPs is strongly
connected to controllability in STPUs. This arises from
the fact that both kinds of problems are concerned with the
representation of uncertainty: STPUs model uncertainty by
defining contingent constraints, while CTPs try to capture
the outcomes of external events by modelling conditional
executions.

We propose here a mapping from STPPUs to CTPPs
that preserves the controllability/consistency of the problem.
The main idea of this mapping is that, if an STPU has con-
tingent constraints defined over finite domains, each possi-
ble value that their endpoints can assume is, in a sense, a
condition which has been satisfied.

Given an STPPU Q =< Ne, Nc, Lr, Lc >, let k = |Lc|,
for every soft contingent temporal constraints li ∈ Lc such
that li =< [ai, bi], fi > we discretize the interval [ai, bi]
and we denote the number of elements obtained with |li|
indicating such a set of elements with {dij , j = 1 . . . |li|}.
For the sake of notation, we write I = {1 . . . |Lc|} and, for
each i ∈ I , Ji = {1, . . . , |li|}



Let us consider the mapping applied to a contingent con-
straint li =< [ai, bi], fi >, defined on executable A and
contingent variable C. We add |li| observation variables,
oij , and |li| variables vij , one for each possible occurrence
of C at time dij in [ai, bi]. Variable oij observes the proposi-
tion pij = “C = d′′ij , while variable vij represents the actual
occurrence of C at time dij .

Moreover we add a hard temporal constraint with interval
eij =< [0, 0], 1 > between oij and vij , and and we add a
soft constraint eoij =< [dij , dij ], f|dij

> between A and
oij .

Any other constraint w involving C in the STPPU is repli-
cated |li| times, one for each dij , obtaining constraint wij

connected to the corresponding vij variable.

Definition 16. Given an STPPU Q =< Ne, Nc, Lr, Lc >,
where I and Ji are as above, we define the CTPP C(Q) as
the tuple < V,E,L,R,OV,O,P >, where

• P is the set of fuzzy atomic propositions {pij , i ∈ I, j ∈
Ji};

• V = Ne ∪ {oij , i ∈ I, j ∈ Ji} ∪ {vij , i ∈ I, j ∈ Ji};

• E = Le
r ∪ {eij , i ∈ I, j ∈ Ji} ∪ {eoij , i ∈ I, j ∈

Ji} ∪ {wij , i ∈ I, j ∈ Ji} where Le
r is the set of all

the requirement constraints in Lr defined only between
executable variables and eij , eoij , and wij are as defined
above;

• L : V → Q∗ is a function such that L(vij) = pij and
true otherwise;

• R : V → FR is a function defined as R(vij) = r(0, g),
where g is the constant function equal to f(dij) where is
the preference function of li;

• OV ⊆ V is the set of observation variables {oij ∈ I, j ∈
Ji};

• O : P → OV is a bijective function such that O(pij) =
oij ;

It is possible to show that this mapping preserves the con-
trollability/consistency notions.

Theorem 6. Given an STPPU Q and its corresponding
CTPP C(Q), Q is α-strongly (resp., weakly, dynamically)
controllable iff C(Q) is α-strongly (resp., weakly, dynami-
cally) consistent.

Notice that the result above mentions α-weak controlla-
bility, which is not defined in (Rossi, Venable, & Yorke-
Smith 2006), where only the stronger notion of Optimal-
weak controllability is considered. However α-weak con-
trollability can be directly obtained from the definition of
Optimal weak controllability by replacing “optimal” with
“≥ α whenever the projection has optimal preference at
least α”.
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