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Abstract

AI planning techniques offer very appealing possibilities for
their application to e-learning environments. After all, deal-
ing with course designs, learning routes and tasks keeps a
strong resemblance with the main planning components. This
paper focuses on planning learning routes under a very ex-
pressive constraint programming approach. After present-
ing a general planning formulation based on constraint pro-
gramming, we adapt it to an e-learning setting. This requires
to model learners profiles, learning concepts, how tasks at-
tain concepts at different competence levels, synchronisa-
tion constraints for working-group tasks, capacity resource
constraints and multi-criteria optimisation. Finally, we also
present a simple example that shows the applicability of this
model, the use of heuristics and how the resulting learning
routes can be easily generated.

Introduction
Automated planning is an attractive area within AI due to
its direct application to real-world problems. Actually, most
everyday activities require some type of intuitive planning
in terms of determining a set of tasks whose execution al-
lows us to reach some goals under certain constraints. This
direct application, the benefits it involves and, finally, the
research in planning methods have made it easier the trans-
fer of planning technology to practical applications, rang-
ing from scientific and engineering scopes to social environ-
ments. Social environments such as education constitute an
attractive field of application because of its continuous inno-
vation and use of ICT. However, it is generally agreed that
education has not yet realised the full potential of the em-
ployment of this technology. As explained in (Manouselis &
Sampson 2002), this is mainly due to the fact that the tradi-
tional mode of instruction (one-to-many lecturing, or one-to-
one tutoring), which is adopted in conventional education,
cannot fully accommodate the different learning and study-
ing styles, strategies and preferences of diverse learners.
But now, conventional education is giving way to e-learning
environments, which require learners to take the learning
initiatives and control how knowledge is presented during
instruction (Atolagbe 2002). Particularly, many European
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countries signed the Bologna joint declaration of the Euro-
pean space for higher education1, which entails an important
change in the learning process. With this declaration, learn-
ers roles are much more dynamic, active and autonomous.
The amount of one-to-many lecturing decreases and signifi-
cantly increases the amount of self-learning through the con-
struction of coherent learning routes according to a certain
instructional course design. Finally, this course design rec-
ommends sequence of educational tasks and material, tai-
lored to individual learners needs and profiles.

In this paper we address the construction of learning
routes from the viewpoint of planning based on constraint
programming. After all, generating a learning route rep-
resents a planning activity with the following elements:
learning goals to be attained, profile-adapted tasks with
their prerequisites and learning outcomes (i.e. preconditions
and effects, respectively), non-fixed durations, resources,
ordering and synchronisation constraints, and collabora-
tion/cooperation relations. The underlying idea is to plan
a learning route for a learner with a given profile in order to
reach some learning goals. Each route consists of a sequence
of tasks, such as attending an in-person lesson, doing a lab
exercise, writing a report, etc. Although intuitively each
course-plan is initially created individually for each given
learner, there are some particular tasks that need to be done
simultaneously by several learners, such as attending a lab
for the same practice work. Additionally, these tasks may
require some type of synchronisation (for instance, doing a
working-group task), where the start and/or end must happen
at the same time. In this context, the planning component is
not particularly costly since the plan is usually small (the
number of tasks is between 10-20 per route, though there
may be a lot of alternatives). On the contrary, the schedul-
ing component is more significant because of the resource
availability, the diversity of constraints and their handling
and synchronisation among different routes. These features
are not easily included in traditional planning as they require
artificial mechanisms to be managed, which complicate the
planning algorithms. For instance, a very frequent type of
constraints in an e-learning scenario such as synchronisation

1Available at http://ec.europa.eu/education/
policies/educ/bologna/bologna.pdf (accessed June
2007).



constraints, where several actions need to meet throughout
a whole interval, is not easily represented and handled in
planners.

Our approach for planning learning routes relies on the
constraint programming formulation presented in (Garrido,
Onaindı́a, & Arangu 2006), based on (Vidal & Geffner
2006), which encodes all type of constraints derived from
both planning and scheduling features. Such a formula-
tion provides a high level of expressiveness to deal with
all the elements required in an e-learning setting and has
several advantages: i) it is a purely declarative representa-
tion and, consequently, can be solved by any type of CSP
solver2; ii) although the formulation is automatically derived
from the course design, specific ad-hoc control information
in the form of hand-coded domain knowledge or domain-
dependent heuristics can be included in the formulation to
make the resolution process more efficient; and iii) optimal-
ity is a major issue in this context and so different optimi-
sation criteria can be defined w.r.t. the number of actions
of the learning routes, the duration of their tasks or the cost
associated to them. In summary, this paper introduces a for-
mulation of planning problems by means of constraint pro-
gramming and the application of such a formulation to solve
a learning-route planning problem. This work is being de-
veloped under an on-going national research project whose
objective is the application of AI planning techniques for the
automated design, execution, monitoring and evaluation of
learning routes.

This paper is organised as follows. In the second section
we present the e-learning environment and its relation to AI
planning, motivating some needs for using a constraint pro-
gramming approach. The third section briefly reviews the
formulation of a planning problem by means of constraint
programming, while in the fourth section this formulation is
adapted to fit an e-learning scenario. In the fifth section an
example of application is analysed, showing part of the for-
mulation, implementation and results. Finally, we present
the conclusions of the paper.

E-learning and AI Planning
The application of AI planning techniques has reported im-
portant advances in the generation of automated courses
within e-learning. One of the first attempts in this direc-
tion was the work in (Peachy & McCalla 1986), in which
the learning material is structured in learning concepts and
prerequisite knowledge is defined, which states the causal
relationship between different concepts. This instructional
method was one of the first approaches to combine instruc-
tional knowledge and artificial intelligence planning tech-
niques to generate sequences of learning materials. In the
same direction, Vassileva designed a system that dynam-
ically generates instructional courses based on an explicit
representation of the structure of the concepts/topics in the

2We mean by any type of CSP solver a solver that supports the
expressiveness of our constraint model, which includes binary and
non-binary constraints. In any case, a non-binary constraint can
be translated into a binary one by creating new variables and con-
straints, though this would increase the complexity of the model.

domain and a library of teaching materials (Vassileva 1997).
Other approaches have introduced hierarchical planners to
represent pedagogical objectives and tasks in order to obtain
a course structure (Ullrich 2005). Most recent works, such
as the one presented in (Vrakas et al. 2007), incorporate
machine learning techniques to assist content providers in
constructing learning objects that comply with the ontology
concerning both learning objectives and prerequisites.

Although the task of designing learning routes for e-
learning environments has been accomplished from differ-
ent perspectives, one of the most intuitive approaches is the
instructional planning design (van Marcke 1992), which is
based on learning outcomes, information processing anal-
ysis and prerequisite analysis (Smith 2005). Therefore, e-
learning can be considered as a particular planning domain
with specific constraints.

The underlying idea about instructional planning is to pro-
vide a constructivist learning strategy based on both instruc-
tional tasks and instructional methods, i.e. representations of
different routes to achieve the goals. An expert user, usually
a teacher or instructor, designs a course as a set of learning
tasks with prerequisites that are required prior to the exe-
cution of the task, learning outcomes that are attained af-
ter the execution and a positive duration. The task duration
is usually a non-fixed value because in a learning environ-
ment this value cannot be precisely determined in advance
as it varies among learners. Additionally, the instructor can
define task-task and/or task-outcome constraints as well as
deadlines to attain the learning goals. The main aim of an
instructional session is to find a valid learning route for a
learner to achieve the learning goals, on the basis of his/her
particular constraints (e.g. personal profile, previous knowl-
edge, resource availability and temporal constraints). In
other words, an instructional design determines which learn-
ing tasks are present and in which order by using a structure
of concepts/topics and tasks. As can be noted, an instruc-
tional design keeps a strong resemblance with a plan, as it is
usually modelled in AI planning. Analogously, the elements
necessary to find this design are similar to the elements de-
fined traditionally in planning, since tasks can be expressed
in terms of actions with duration, prerequisites and effects.

First, the course design defined by the instructor may be
seen as a planning domain which contains the tasks that can
be used to form the final learning routes. There is, how-
ever, slight differences in the way the e-learning domain
knowledge is represented. While a planning domain is rep-
resented as a plain-text file (e.g. PDDL format (Gerevini &
Long 2006)), a course design is commonly represented in
a graphic way, thus explicitly modelling the structural re-
lations between tasks. The reason for this is clear: the in-
structor who defines the course design neither needs being
an expert in route modeling languages nor being interested
in their syntax details. On the contrary, a graphic repre-
sentation turns out more useful when showing the workflow
among tasks (see Figure 1 below).

Second, a learning task is equivalent to an action. A task
has prerequisites and learning outcomes, analogously to the
conditions and effects of an action. Although a non-fixed
duration is not a common feature in planning, where the du-



ration of the actions is well-known, this does not involve any
difficulty in a constraint programming setting as it can be
simply modelled by creating a new variable in the problem
that represents such a duration (see next section for more
details). Regarding the definition of constraints, there exist
two basic types: task-task and task-outcome ordering con-
straints and/or deadlines. These types of constraints are not
commonly used in planning (particularly, orderings are only
due to causal link relations) but their definition within con-
straint programming is straightforward. As we will discuss
later, other more elaborate constraints can be defined simi-
larly and easily, which makes a constraint programming set-
ting more appealing than traditional planning.

Third, prerequisites and learning outcomes, also known
as knowledge objects or simply as concepts, can be seen as
fluents that are required/achieved by tasks. In planning, flu-
ents can represent propositional or numeric information. In
the former, the domain is binary: the fluent (as a boolean
proposition) is either present or not. In the latter, the do-
main can be defined as a real or integer domain, where the
range of possible values is significantly higher than two. In
an e-learning environment all concepts are numeric because
no concept is entirely boolean; when a learner performs a
task and achieves a concept it is not as easy as getting or
not getting such a concept, but several degrees of achieve-
ment can be considered. This means that all the planning
process has to reason with numeric information in order to
attain concepts at a certain competence level, such as achiev-
ing a given concept in a degree greater than 5. The way
to achieve these concepts involves a subtle particularity as
well. In traditional planning, actions modify their numeric
effects in several ways by assigning a new value, increasing,
decreasing or scaling its current value. However, in an e-
learning domain tasks only have increasing effects, i.e. tasks
can only improve the value of a concept but never worsen
it. Using exclusively increasing effects means that once a
learner has attained a concept through the execution of one
or several tasks, no further tasks can lessen the competence
level the learner has attained; that is, the learning process is
a monotonically incremental process. Some authors3 agree
that performing tasks may alter the current knowledge state
(value of the concepts) of the learners and even defeat some
concepts already attained in the past. In a constraint pro-
gramming formulation this is possible by simply express-
ing such an alteration as a threat to be solved. However,
we consider the fact of forgetting concepts, i.e. expressing
limited persistence on the concepts, more appealing for a
real e-learning environment. This way, we may include a
concept-task temporal constraint in the form: a concept can
only be used as a prerequisite for a task within 40 hours of
its achievement. This type of constraint can be easily mod-
elled using the constraint programming formulation defined
below.

Finally, quality assessment for learning routes plays a
similar role to the optimisation process in planning. Now,
the optimisation criterion can be seen from two different per-
spectives. From the learner’s point of view, the criterion to

3Dimitris Vrakas (2007), personal communication.

be optimised is the length of the learning route (plan), either
in terms of number of tasks, their duration or difficulty level.
It is important to note that the learning route of a learner is
formed by a set of sequential tasks. In planning terminology
this implies having a sequential plan per learner, where no
tasks are executed simultaneously. Obviously, a learner can-
not perform two tasks at the same time, but it is possible and
frequent to have parallel plans for different learners. From
the expert or teaching center point of view, the criterion to
be optimised may be associated to the cost of the tasks, usu-
ally given in terms of the cost of the used resources. For
instance, if some tasks need an expensive resource the opti-
misation criterion will tend to reduce the usage cost by using
alternative cheaper tasks. The optimisation of resource us-
age and cost is more a scheduling feature than a planning
one itself, but a constraint programming formulation can
combine both features under the same model, which again
makes a constraint programming setting an interesting ap-
proach. Additionally, a multi-criteria optimisation function
that combines the two viewpoints can be easily defined to
take into consideration a more representative metric.

Planning as a Constraint Programming
Formulation

In this section we present a general model to formulate plan-
ning as constraint programming that will be used as a basis
for the e-learning scenario. Constraint programming formu-
lations have been used in many approaches to handle both
planning and scheduling features. A common feature that
appears in these approaches is that they rely on constraint
satisfaction techniques to represent and manage all different
types of constraints, including the necessary constraints to
support preconditions, mutex relations and subgoal preserv-
ing. That is, they use constraint programming for planning
by encoding a planning problem as a CSP. Therefore, CSP
formulations for planning include reasoning mechanisms to
represent and manage the causal structure of a plan as well
as constraints that denote metric, temporal and resource con-
straints. This general formulation through constraint pro-
gramming has the ability to solve a planning problem with
very elaborate models of actions. Moreover, automated for-
mulations, like the ones presented in (Vidal & Geffner 2006;
Garrido, Onaindı́a, & Arangu 2006) have the advantage that
once the constraint programming model is formulated, they
can be solved by any CSP solver.

In a constraint programming setting, a problem is repre-
sented as a set of variables, a domain of values for each vari-
able and a set of constraints among the variables. Variables
are basically used to define actions and conditions, both
propositional and numeric, required by actions, along with
the actions that support these conditions and the time when
these conditions occur (time is modelled in R). Variables are
defined for each action present in the problem, which may
comprise all actions of the planning domain (after grounding
all operators), or a smaller subset. Every action a is repre-
sented by the following basic variables (Garrido, Onaindı́a,
& Arangu 2006):

• S(a), E(a) represent the start and end time of action a.



• dur(a) represents the duration of action a.

• InP lan(a) encodes a binary variable that denotes the
presence of a in the solution plan.

• Sup(c, a) represents the action that supports condition c
for action a, where c represents a fluent that can be either
propositional or numeric.

• T ime(c, a) represents the time when the causal link
Sup(c, a) happens; if c is a numeric condition,
T ime(c, a) represents the time when the action in
Sup(c, a) last updates c.

• Reqstart(c, a) and Reqend(c, a) represent the interval in
which action a requires condition c. These variables pro-
vide a high expressiveness for representing a wide type
of conditions, from punctual conditions to conditions re-
quired throughout an interval beyond the action duration.

• Vactual(c, a) is a variable only used for numeric condi-
tions which denotes the value of the corresponding fluent
c at time Reqstart(c, a) if a requires condition c; other-
wise, this variable stores the actual value of the numeric
fluent at time S(a).

• Vupdated(c, a) represents the new value for the fluent c
updated by action a. This variable is only necessary in
case a modifies the fluent c.

Constraints represent relations among variables and cor-
respond to assignments and bindings of the variables, sup-
porting, temporal and numeric constraints. The basic con-
straints defined for each variable that involves action a are:

• S(a) + dur(a) = E(a) binds the variables start and end
of any action a.

• E(Start) ≤ S(a) represents that any action a must start
after fictitious action Start.

• E(a) ≤ S(End) represents that any action a must finish
before fictitious action End.

• T ime(c, a) ≤ Reqstart(c, a) forces to satisfy condition c
(either propositional or numeric) before it is required.

• T ime(c, a) represents the time when the action in
Sup(c, a) adds or updates (propositional or numeric) con-
dition c. When c is a numeric condition, Vactual(c, a) =
Vupdated(c, Sup(c, a)).

• Cond(c, a) = Vactual(c, a) comp-op expression,
where comp-op ∈ {<,≤, =,≥, >, 6=} and expression
is any combination of variables and/or values that
is evaluated in R, which represents the condi-
tion that the corresponding fluent c must satisfy in
[Reqstart(c, a), Reqend(c, a)] for action a.

• Branching. Sup(c, a) = bi ∧ Sup(c, a) 6= bj | ∀bi, bj

(bi 6= bj) that supports c for a, which represents all
the possibilities to support c, one for each bi (while
|Sup(c, a)| > 1).

• Solving threats. Let time threat(bi) be the time when
action bi threatens the causal link Sup(c, a), i.e. when
bi changes the value of c generated by Sup(c, a). In that
case, the constraint (time threat(bi) < Time(c, a)) ∨

(Reqend(c, a) < time threat(bi)) must hold, which rep-
resents the idea of threat resolution by using promotion or
demotion.

• Solving mutexes. Let time(bi, c) and time(bj , c) (bi 6=
bj) be the time when bi and bj modify c, respectively; if c
is a propositional fluent bi/bj generates/deletes c, whereas
if c is a numeric fluent bi and bj give different values to
c. Hence, ∀bi, bj : time(bi, c) 6= time(bj , c) must hold,
which represents the mutex resolution between the two
actions being executed in parallel: bi and bj cannot mod-
ify c at the same time.

This flexible formulation also admits the specification of
complex planning constraints such as persistence of con-
cepts, temporal windows in the form of external constraints
or general customised n-ary constraints to encode complex
constraints that involve several variables of the model. Note
that despite the high number of constraints in the model, they
are only essential when involving actions with their variables
InP lan() = 1.

The expressiveness of this model formulation facilitates
the encoding of any planning problem, from purely propo-
sitional problems to more elaborate domains which mix
propositional and numeric information, along with more
complex constraints. In general, the resolution of the con-
straint programming model is a hard task, which becomes
even more difficult when there exists many variables to be
instantiated and constraints to fulfill. However, the most
costly task in the overall resolution process is selecting the
values for variables Sup(c, a), i.e establishing the causal
links of the actions that create the causal structure of the
plan. On the contrary, this formulation model shows very ef-
ficient when the main aim is only to schedule plans or solve
problems with medium/low load of planning. In this case,
variables InP lan() are already instantiated; the plan is al-
ready known and the only task is to assign the execution
times of the actions and satisfy all problem constraints. In
other words, this model turns out to be very appropriate in
those problems where planning is not the big deal, that is, for
pseudo-planning problems with a high load of scheduling.

Regarding the formal properties of this formulation, it in-
herits the properties of a POCL approach such as soundness,
completeness and optimality. Soundness and completeness
are guaranteed by i) the definition of the model itself, be-
cause all the alternatives to support causal links and solve
threats and mutexes are considered, and ii) the completeness
of the CSP solver, which performs a complete exploration of
the domain of each variable. Optimality is also guaranteed
by the CSP solver by performing an exhaustive, complete
search until finding the best quality solution.

Adapting the Constraint Programming
Formulation for E-learning

The general constraint programming formulation presented
in the previous section needs to be slightly changed in or-
der to be adapted to an e-learning environment. On the
one hand, it needs to be simplified for all features related
to: i) variables and constraints for propositional informa-
tion, which are not used in this environment, ii) variables



Reqstart, Reqend that are no longer necessary because con-
ditions are required to be satisfied only at the beginning of
each task and they are monotonically incremented, and iii)
mutex-solving constraints that are now unnecessary as plans
are sequential and no tasks for the same learner are executed
in parallel. On the other hand, the formulation needs to be
extended to include: i) constraints to guarantee a sequen-
tial plan per learner, though different learners’ plans are in
parallel, ii) synchronisation constraints for working-group
tasks, and iii) capacity constraints to avoid overexceeding
resources capacity such as labs, classrooms, etc. Now, the
constraint model must include the following constraints:

• Elimination of Reqstart, Reqend: the constraint
T ime(c, a) ≤ Reqstart(c, a) now becomes
T ime(c, a) ≤ S(a).

• Sequential plan per learner: let Tli be the set of all pos-
sible tasks that a learner li could execute. The constraint
∀tj , tk(tj 6= tk) ∈ Tli : (E(tj) ≤ S(tk)) ∨ (E(tk) ≤
S(tj)) must hold.

• Synchronisation of working-group tasks: let
{tli , tli+1

. . . tli+n
} be the tasks that learners

li, li+1 . . . li+n must respectively execute at the same
time as a common working-group task. The constraint
(S(tli) = S(tli+1

) = . . . = S(tli+n
)) ∧ (E(tli) =

E(tli+1
) = . . . = E(tli+n

)) must hold (obviously
all the durations must be the same). Addition-
ally, if these tasks require a particular resource
Rj , such as a lab, special equipment, etc., they
need to fit in the temporal window of the resource
availability given by [min(tw(Rj)), max(tw(Rj))].
This way, the next constraint must also hold:
(min(tw(Rj)) ≤ S(tli)) ∧ (E(tli) ≤ max(tw(Rj))).

• Resource capacity: let T = {tli , tli+1
. . . tli+n

} be the set
of all tasks that are executed simultaneously (all the start-
ing and ending points coincide, respectively) by different
learners and require a resource Rj . Assuming that these
tasks consume some quantity of a resource Rj (denoted
by use(tli , Rj)), the next constraint to avoid resource
overconsumption must hold:

∑
i=1..n use(tli , Rj) ≤

C(Rj), where C(Rj) is the max capacity of resource Rj .
This ensures that at any time throughout the execution of
the tasks in T , the sum of all the individual resource con-
sumption of the tasks does not exceed the resource capac-
ity.

Domain-dependent heuristics
When solving a planning problem, the use of adequate
heuristics becomes essential to improve the efficiency of the
search and, consequently, the overall performance. Clearly,
the same happens when solving a constraint satisfaction
problem and especially when the problem represents a plan-
ning problem that contains many variables and constraints.
One of the most effective points to apply heuristics is the
branching point, i.e. when the CSP solver needs to assign a
value to the variables InP lan(), Sup() and S()/E() (note
that the value of the remaining variables of the model comes
from a propagation of the assignment for these variables). In

this point, the heuristics can be defined as the usual variable
and value selection heuristics in order to reduce the branch-
ing factor, that is, which variable to select first and which
value to instantiate first, respectively. Traditionally, CSP
heuristics use domain-independent information to estimate
this selection order, such as first select the variable with the
max number of constraints, or the one with the min domain,
or instantiate the values in an increasing, decreasing or ran-
dom order. However, this may not be the best approach to
tackle an e-learning planning problem as can be seen in the
next example.

Let us assume an e-learning setting with the tasks Tl1 =
{t1l1 , t2l1 . . . til1} and Tl2 = {t1l2 , t2l2 . . . tjl2} that can be
included in the learning routes (plans) for learners l1 and
l2, respectively. Since the aim of the CSP solver is to find
which tasks will be part of the solution, when using a blind
heuristic the variable selection could try to instantiate first
the variables associated with task t1l1 , then t1l2 , t2l1 , t2l2

and so on, i.e. alternating tasks of the two different learners
in a breath-first strategy. If there appears a conflict because
of the selected tasks for a learner, a lot of unnecessary back-
tracking will be done on the tasks of the other learner. For
instance, if task t1l1 was wrongly chosen, the CSP solver
will need to backtrack on the already-instantiated tasks t1l2 ,
t2l2 , etc. that will not fix the problem of learner l1 and
will imply a lot of thrashing. This indication of ineffi-
ciency is much more significant when the number of learn-
ers increases and, particularly, in problems with symme-
try, where a lot of effort is wasted trying to unsuccess-
fully instantiate almost identical tasks for different learn-
ers. Although there are some works about more efficient
ways to guide backtracking, learn from conflicts and exploit
symmetry when planning as a CSP (Kambhampati 2000;
Zimmerman & Kambhampati 1999), we can apply a very ef-
fective domain-dependent heuristic by simply grouping the
variables w.r.t. the learner they belong to. Thus, the selection
strategy selects first the variables of one learner and does
not move to a second learner until finding a valid learning
route for the first one. This can be seen as a depth-first strat-
egy, which though it does not avoid backtracking in conflict-
ing cases with different learners sharing the same oversub-
scripted resource, it shows very effective in most situations.
Actually, this simple strategy allows to find more learning
routes for more learners in less time. Further, this heuris-
tic has two additional advantages: i) it is valid for any CSP
solver, and ii) it does not introduce an overhead in the solv-
ing process as the variable grouping can be computed before
solving the problem, i.e. the grouping is independent of the
solving process itself.

An E-learning Scenario of Application
In this section we present an e-learning scenario that will be
used as an application example to show how to plan learn-
ing routes under a constraint programming approach. We
assume that an expert defines the course design depicted in
Figure 1, which consists of 7 concepts (6 + 1 previous con-
cept) and 9 tasks of different non-fixed duration. Each con-
cept represents a learning object, i.e. a knowledge item that
can be attained from one or more tasks. Each task may rep-



Figure 1: Course design for the e-learning scenario of application. Some tasks and concepts generated as effects are profile-
dependent. The duration of the tasks is indicated between brackets. Note that tasks and concepts represent the idea of actions,
preconditions and effects used in planning.



resent a discrete lesson, a seminar activity, a public talk or
even a higher level course. For simplicity matters we as-
sume that each learner can execute each task only once4.
The course shown in Figure 1 is appropriate for learners with
different learning styles, such as input profile (visual or ver-
bal) or organisation profile (inductive or deductive), follow-
ing the classification given in (Felder & Silverman 1988).
According to the learner’s profile, (s)he can perform, or not,
a given task. Particularly, Task2 is only adequate for learners
with a visual input profile. Moreover, tasks attain concepts
at different competence levels (percentages) depending on
the type of profile they are applied to. For instance, Task3
generates Concept4 at different levels if the learner is visual
or verbal. We also assume that Task1 is an in-person lesson
that needs to be performed in a synchronised way for all the
learners, while Task4 requires a particular resource of max
capacity 2, i.e. only two learners can perform such a task at
the same time.

We apply the previous design course in an e-learning sce-
nario with 4 learners with different profiles. Table 1 shows
the profiles for these learners, the initial values of prev-
Concept1 and the value required for Concept6, which is con-
sidered as the final learning goal to be attained at different
competence levels.

Learner Profile prev-Concept1 Concept6
Learner1 visual, inductive = 25 ≥ 100

Learner2 verbal, inductive = 0 ≥ 75

Learner3 verbal, deductive = 50 ≥ 100

Learner4 visual, deductive = 0 ≥ 50

Table 1: Initial features of the four learners.

Formulation of the problem According to the constraint
programming model presented above, the formulation for
Task2 (and its concepts) of Learner1 includes the following
variables and constraints:

• InP lan(T2) ∈ [0, 1]

• S(T2), E(T2) ∈ [0,∞[

• dur(T2) ∈ [3, 5]

• Sup(C1, T2) ∈ {Start, T1}

• Sup(C3, T2) ∈ {Start, T3, T4, T5}

• Sup(C4, T2) ∈ {Start, T3, T4}

• T ime(C1, T2), T ime(C3, T2), T ime(C4, T2) ∈
[0,∞[

• S(T2) + dur(T2) = E(T2)

• E(Start) ≤ S(T2) < E(T2) ≤ S(End)

• T ime(C1, T2) ≤ S(T2), T ime(C3, T2) ≤ S(T2),
T ime(C4, T2) ≤ S(T2)

• if Sup(C1, T2) = Start then T ime(C1, T2) = Start
if Sup(C1, T2) = T1 then T ime(C1, T2) = T1

4Note that when the same task can be executed more than once
per learner, the constraint programming formulation needs to in-
clude a new occurrence per task (with all its variables and con-
straints).

• if Sup(C3, T2) = Start then T ime(C3, T2) = Start
if Sup(C3, T2) = T3 then T ime(C3, T2) = E(T3)
if Sup(C3, T2) = T4 then T ime(C3, T2) = E(T4)
if Sup(C3, T2) = T5 then T ime(C3, T2) = E(T5)

• if Sup(C4, T2) = Start then T ime(C4, T2) = Start
if Sup(C4, T2) = T3 then T ime(C4, T2) = E(T3)
if Sup(C4, T2) = T4 then T ime(C4, T2) = E(T4)

• ∀Ti (Ti 6= T2) of Learner1: (E(T2) ≤ S(Ti)) ∨
(E(Ti) ≤ S(T2))

The variables for other tasks of Learner1 and other learn-
ers are generated similarly, including the synchronisation
and resource capacity constraints if necessary.

Implementation and results The constraint program-
ming formulation is modelled and solved by Choco5. We
have modified the variable selector of the Choco engine to
take into consideration the problem variables grouped by
learner, analysing first Learner1, then Learner2 and so on.
The metric to optimise involves an expression with as many
variables as the user requires, such as number of tasks, cost
for using the labs or any combination of them. In this exam-
ple we perform the optimisation task from the learner’s point
of view, i.e. optimising the number of actions in the four
learning routes. This means to find the solution with the min
number of tasks to reach the learning goals, which in this
case also coincides with the routes of the shortest makespan.
In such a case, Choco performs an exhaustive search of so-
lutions until no feasible solution improves the quality of the
best solution found until that time. In a problem like this,
guaranteeing the optimal solution is a very expensive task,
but in most cases a good solution can be found in a few sec-
onds. Actually, Choco finds a solution very quickly and
this turns to be the optimal one, though this cannot be gen-
eralised. Particularly, in this problem Choco found two so-
lutions, the first one with 21 tasks and the second with 20,
in 1 and 12 seconds respectively. Although we extended
the search for more than 20 minutes no better solution was
found. It is important to note that the used heuristic plays a
valuable role in the solving process. For instance, we tried to
solve this problem using the Choco default variable selec-
tion heuristic (first select the variable with the min domain),
and the first solution was found after 12 minutes (the opti-
mal solution took nearly 15 minutes). This shows that very
simple heuristics can improve a lot the performance, with no
changes in the constraint formulation at all.

The learning routes for each learner are shown in Figure 2.
The longest route has a makespan of 16 (Learner1), but other
learners’ routes are shorter. As indicated in the problem con-
straints, it is important to note two properties: i) Task1 is
executed at the same time by the four learners because of
the synchronisation requirement of an in-person lesson, and
ii) Task4 can be executed in parallel at most by two learners
because of the capacity constraint.

5Choco is a Java library for constraint sat-
isfaction problems that can be downloaded from
http://choco.sourceforge.net



Figure 2: Resulting learning routes for each of the four
learners.

Conclusions

Constraint programming formulation is a very appropriate
approach to tackle planning problems that require the repre-
sentation and management of a wide range of constraints, as
it is the case of e-learning environments. Designing a learn-
ing route can be viewed as generating a plan in a domain
where it is necessary to handle resources and the capability
of such resources, synchronised tasks among several learn-
ers, orderings between tasks, deadlines or other customised
and elaborate constraints. In principle, as a planning prob-
lem, the design of learning routes could be accomplished
by using a current state-of-the-art planner. However, current
planners cannot afford complex constraints as task synchro-
nisation or, otherwise, it would be necessary many artificial
tricks for representing and handling it. On the other hand,
optimality is a major issue in e-learning contexts either from
the learner or teaching center viewpoint, so it is important to
guarantee good-quality plans as this might affect the overall
learning route.

In an e-learning context, the activity that requires a little
bit of effort is the definition of the course design by the in-
structor. It is necessary to classify the learning tasks, study
the prerequisites and outcomes of each task (concepts), iden-
tify the profiles for which the task is best focus, determine
the assessment points, establish the competence level for the
concepts, etc. However, although this can be a bit tedious
activity, the course design comprises the specification of a
learning domain that can be used for the generation of learn-
ing routes in many different contexts (teaching centers), for
different learner profiles and with different optimisation cri-
teria. In other words, it is worth the effort devoted to course
design in favor of the reusability degree we can obtain with
our approach for planning routes in e-learning environments.

We can conclude by saying that the expressiveness of con-
straint programming makes it very appropriate for the mod-
eling learning routes. The adequacy is also given by the fact
that designing learning routes is not a very complex plan-
ning problem but rather a complex scheduling problem. For
this reason, constraint programming approaches seem to be
a promising direction for e-learning contexts.
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