
Extensions of the COMPLETION Constraint

András Kovács
Projet Contraintes, INRIA Rocquencourt, France

and
Computer and Automation Research Institute, Hungary

akovacs@sztaki.hu

J. Christopher Beck
Department of Mechanical & Industrial Engineering

University of Toronto
jcb@mie.utoronto.ca

Abstract

The COMPLETION global constraint has been proposed for
single-machine, unary-resource, total weighted completion
time scheduling problems where it has shown good perfor-
mance. In this paper, we look at extending the constraint in
two ways. First, we apply the constraint to multiple machine
scheduling problems, in the form of job shop scheduling. It is
shown that under the right allocation of weights to activities,
the COMPLETION constraint results in significantly better
scheduling performance compared to the standard expression
of the weighted completion time. Second, we extend the
constraint from the unary to discrete resources. Empirically
this extension results in an orders of magnitude improvement
in the number of nodes required to find a solution though a
somewhat more mixed result on run-time.

Introduction
The COMPLETION constraint is a recently proposed global
constraint to propagate the total weighted completion time
of activities on a single unary capacity resource (Kovács
& Beck 2007). It employs a lower bound based on a pre-
emptive relaxation that is computable in polynomial time
and a recomputation of the lower bound to prune values from
the start time domains of the activities. Empirical results
have shown strong performance compared to existing CP ap-
proaches on single machine problems with release times. On
the other hand, state-of-the-art techniques developed for the
specific single machine problem, including a branch-and-
bound search with powerful dominance rules and a sophisti-
cated dynamic programming approach, are still significantly
better than the COMPLETION constraint with basic CP tree
search. The strength of the COMPLETION constraint is
its applicability to problems with various side constraints,
which are not tractable by the above dedicated methods.

In this paper, we investigate two extensions of the COM-
PLETION constraint:

1. Applying COMPLETION to multiple machine schedul-
ing;

2. Extending COMPLETION to discrete resource schedul-
ing.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In the next section, we provide background on the COM-
PLETION constraint and a short discussion of related work.
We then present sections on either of the extensions individ-
ually.

Previous Work
A critical component of the success of pure constraint pro-
gramming (CP) techniques to optimization problems is the
ability to design a model that exhibits significant back prop-
agation. Back propagation is the reduction in search space
through pruning of the domains of decision variables as a
result of a new bound on the optimization function. Models
that exhibit a high degree of back propagation will tend to
be successful as new (sub-optimal) solutions will result in a
smaller subsequent search space. In contrast, without back
propagation, the full search space will need to be explored,
suggesting that CP will not result in any better performance
than any other search technique.

The significance of cost-based global constraints for
strong back propagation has been emphasized by Focacci
et al. (Focacci, Lodi, & Milano 2002b). Cost-based con-
straints with effective propagation algorithms include the
global cardinality constraint with costs (Régin 1999), the
minimum weight all different constraint (Sellmann 2002),
the path cost constraint for traveling salesman problems (Fo-
cacci, Lodi, & Milano 2002a), and the cost-regular con-
straint (Demassey, Pesant, & Rousseau 2006). The COM-
PLETION constraint is a cost constraint for total weighted
completion time. This objective and other “sum-type” ob-
jectives are common in scheduling applications.

The single-machine, unary capacity total weighted com-
pletion time problem when activities have different release
dates is NP-hard (Chen, Potts, & Woeginger 1998). Us-
ing the classical α|β|γ scheduling notation (Graham et al.
1979) with wi being the weight of job Ai, ri its release
time, and Ci being its completion time in the schedule, this
problem can be expressed as 1|ri|

∑
wiCi. However, a pre-

emptive version of the problem with a slightly modified ob-
jective function is computable in polynomial time and serves
as a lower bound. Let Mi be the mean busy time of ac-
tivity Ai. That is, Mi is the mean point in time at which
the machine is busy processing activity Ai. The problem
1|ri, pmtn|

∑
wiMi can be solved inO(n log n) where n is

the number of activities (Goemans et al. 2002).

We can, therefore, implement a global constraint that fil-
ters the domains of the start time variables by computing the
cost of the optimal preemptive mean-busy time relaxation
for each activity Ai and each possible start time t of activity
Ai, with the added constraint that activity Ai must start at
time t. If the cost of the relaxation is greater than the current
best known solution, then t is removed from the domain of
the start time variable of Ai.

In practice, we do not naively re-solve the relaxation for
each start time in the domain of each activity. Instead, a
much faster algorithm allows us to transform an initial re-
laxed solution into preemptive schedules with given start
time assignments. For a detailed presentation of this algo-
rithm and the COMPLETION constraint, in general, readers
are referred to (Kovács & Beck 2007).

Formally, the COMPLETION constraint is defined as fol-
lows:

COMPLETION([S1, ..., Sn], [p1, ..., pn], [w1, ..., wn], C)

where there are n activities, Ai, to be executed without pre-
emption on a single, unary resource. Each activity is charac-
terized by its processing time, pi, and a non-negative weight,
wi. The start time variable of Ai is denoted by Si. The total
weighted completion time of the activities will be denoted
by C. We assume that all data are integral. The constraint
enforces C =

∑
i wi(Si + pi).

Application to Multiple Machine Scheduling
An n × m job shop scheduling problem (JSP) has n jobs
each composed of m completely ordered activities. Each
activity requires exclusive use of one resource during its ex-
ecution. The duration and the resource for each activity are
given and may be different from that of other activities: of-
ten, as in the problems studied here, a different resource is
specified for each activity in a job. An activity cannot start
until the activity immediately preceding it in the same job
has finished. The standard JSP decision problem asks if, for
a given makespan, D, all activities can finish by D. This
is a well-known NP-complete problem (Garey & Johnson
1979). It is not uncommon to solve the optimization version
of the JSP with the goal of minimizing makespan or some
other metric such as sum of earliness and tardiness (Beck &
Refalo 2003) or, in the present case, the sum of the weighted
completion time of all jobs. More formally, given a set of
jobs J and a weight, wj , j ∈ J , our goal is to find a start
time for each activity such that:

• no resource executes more than one activity at a time

• each activity starts after its preceding activity in the job-
order ends

•
∑
j∈J wjCEj is minimized, where Ej is the last activity

in job j.

We study square JSPs (i.e., n = m) where each job has
exactly one activity on each resource.

From Job Weights to Activity Weights
Applying the COMPLETION constraint to the JSP is
straightforward as the resources have unary capacity. There-
fore, we can apply the constraint to each resource, individ-
ually. The only complication is that the constraint uses a
weight on each activity and the JSP has weights on each job.
Therefore, we need to define a mapping from job weight to
activity weight.

The obvious approach, which we refer to as last, is to as-
sign the job weight to the last activity in each job and to
assign all other activities a weight of zero. We then place a
COMPLETION constraint on each resource that has a non-
zero weight activity and the total weighted completion time
is the sum of the C values of each COMPLETION con-
straint.

The last approach has two main drawbacks. First, a com-
putationally expensive COMPLETION constraint is placed
on each resource. Second, the COMPLETION constraint
makes inferences based on a relaxation that focuses on the
interaction among activities on the same resource. Clearly,
this interaction is not captured when the weighted activities
are on different resources. In the extreme, the last activity in
each job may be the only weighted activity on a resource.
Under such circumstances, the COMPLETION constraint
is not able to make any inferences stronger than the simple
weighted sum constraint.

Therefore, we propose a different weight mapping, called
busy. Before solving, we identify the most loaded resource,
i.e., the “busy” resource, by summing the durations of the
activities on each resource and selecting the resource with
highest sum. The weight of each job is assigned to the last
activity of the job that is processed on the busy resource. All
other activities have a weight of zero. A single COMPLE-
TION constraint can then be posted on the busy resource.
To calculate the total weighted completion time, we need to
correct for the fact that the weighted activity is not necessar-
ily the last activity in the job.

Formally, as above, let Ej be the last activity in job j and
letBj be the single weighted activity in job j. Our optimiza-
tion function is then: C +

∑
j∈J wj(CEj

− CBj
) where C

is the cost variable associated with the COMPLETION con-
straint.

Experimental Details
To test the effectiveness of the COMPLETION constraint,
we compare it against the standard weighted sum, WS, form
of the optimization function. For completeness, we also run
WS with last and busy weight allocations.

We experiment with two styles of search: chronologi-
cal backtracking and randomized restart. For chronological
backtracking (i.e., depth-first search) we use a customized
version of the SetTimes heuristic available in ILOG Sched-
uler 6.3. The heuristic selects all activities with minimum
start time and breaks ties by choosing the activity with the
highest ratio of weight to duration. The selected activity is
scheduled at its earliest start time. Upon backtracking, the
scheduled activity is postponed, meaning that it will not be
considered for selection again until constraint propagation

has increased its minimum start time. When all minimum
start time activities are postponed, the search backtracks fur-
ther as no better schedule exists in the subtree.

For randomized restart, the limit on the number of back-
tracks before restarting evolves according to the universal
limit developed by Luby et al. (Luby, Sinclair, & Zucker-
man 1993). The heuristic is a randomized version of the
customized SetTimes heuristic used above. Again, the set of
activities with minimum start time are selected. One activity
from this set is randomly chosen by a biased roulette wheel
weighted by the ratio of activity weight to duration. Higher
weight, lower duration activities have a higher probability of
being selected.

Two sets of 10 × 10 JSP problems are used. Initially 10
makespan instances were generated with an existing gener-
ator (Watson et al. 1999). The machine routings were ran-
domly generated and the durations were uniformly drawn
from [1, 99]. These instances were transformed into two
sets of total weighted completion time problems with the
only difference being the range of job weights: the first set
has job weights uniformly drawn from the interval [1, 9] and
the second set has job weights uniformly drawn from the in-
terval [1, 99].

The models and algorithms were implemented in ILOG
Scheduler 6.3. Experiments were run on 2GHz Dual Core
AMD Opteron 270 with 2Gb RAM running Red Hat Enter-
prise Linux 4. We used an overall time-out of 1200 CPU
seconds for each run. The randomized restart results are the
mean over 10 independent runs.

Results
For this experiment, the dependent variable is mean relative
error (MRE) relative to the best solution known for the prob-
lem instance. The MRE is the arithmetic mean of the relative
error over each run of each problem instance:

MRE(a,K,R) =
1

|R||K|
∑
r∈R

∑
k∈K

c(a, k, r)− c∗(k)
c∗(k)

(1)

where K is a set of problem instances, R is a set of inde-
pendent runs with different random seeds, c(a, k, r) is the
lowest cost found by algorithm a on instance k in run r, and
c∗(k) is the lowest cost known for k. As these problem in-
stances were generated for this experiment, the best-known
solution was found either by the algorithms tested here or by
variations used in preliminary experiments.

Figures 1 and 2 display the results for the two problem
sets. There are two main comparisons of interest:

1. COMPLETION vs. WS back propagation, with the
search held constant. With either search technique and
on both problem sets, the COMPLETION constraint with
busy weight allocation (COMP-BUSY) significantly out-
performs the other three variations (WS-BUSY, WS-
LAST, and COMP-LAST). The difference is larger with
chronological backtracking than with randomized restart.

2. Randomized restart (RR) vs. chronological backtrack-
ing (Chron) with the propagation held constant. The

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000 1200

M
ea

n
R

el
at

iv
e

E
rr

or

Time (secs)

RR: WS, LAST
RR: WS, BUSY

RR: COMP, LAST
RR: COMP, BUSY
Chron: WS, LAST
Chron: WS, BUSY

Chron: COMP, LAST
Chron: COMP, BUSY

Figure 1: The mean relative error for different propagation
techniques with different search for the problems with job
weight uniformly drawn from [1, 9].

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000 1200

M
ea

n
R

el
at

iv
e

E
rr

or

Time (secs)

RR: WS, LAST
RR: WS, BUSY

RR: COMP, LAST
RR: COMP, BUSY
Chron: WS, LAST
Chron: WS, BUSY

Chron: COMP, LAST
Chron: COMP, BUSY

Figure 2: The mean relative error for different propagation
techniques with different search for the problems with job
weight uniformly drawn from [1, 99].

chronological search significantly out-performs random-
ized restart. For the problems with narrower weight range,
even chronological backtracking with the weaker propa-
gation out-performs randomized restart with the stronger
propagation.

Generalizing to Discrete Resources

Extending the COMPLETION constraint to a dis-
crete resource, we introduce the global constraint
COMPLETIONm, which states that given a set of
non-preemptive activities {A1, ..., An} that require the
same discrete resource with capacity R, the total weighted
completion time of these activities is C. The constraint
takes the form:

COMPLETIONm([S1, ..., Sn], [p1, ..., pn], [%1, ..., %n],
[w1, ..., wn], R, C),

where finite-domain variables Si stand for the start time of
Ai, while pi, %i, and wi denote the duration, the capacity
requirement, and the weight of Ai, respectively. The cost
variable C is also a finite-domain variable in the CSP. We
assume that pi, %i, wi, and R are non-negative integer con-
stants, however our approach can be easily adapted to rea-
soning with the lower bounds of pi, %i, andwi, and the upper
bound of R.

The minimum and maximum values in the current domain
of a variable X will be denoted by X̌ and X̂ , respectively.
When appropriate, we call the current lower bound of a start
time variable, Ši, the release time of the activity, and denote
it by ri. For brevity, we denote the relative weight of an
activity by µi = wi/pi%i.

The Relaxed Problem
Effective propagation requires embedding into the constraint
a polynomially solvable relaxation of the single discrete re-
source total weighted completion time problem that consid-
ers capacity constraints, resource requirements, and release
times at the same time. As such a relaxation does not appear
to have been presented in the literature, below we propose a
novel relaxation of this scheduling problem, see Fig.3.

Minimize∑
i,t

t µi x
i
t (2)

s.t.

∀i, t xit ≥ 0 (3)

∀i
∑
t

xit = pi%i (4)

∀t
∑
i

xit ≤ R (5)

∀i, t
t∑

t′=0

xit′ ≤

{ 0 if t < ri
(t− ri + 1)%i if ri ≤ t < ri + p
pi%i if t ≥ ri + p

(6)

Figure 3: The variable-intensity relaxation of the discrete
resource scheduling problem.

In the relaxed problem, we assume that activities Ai can
be executed with a varying intensity over time. That is, in
each time period [t, t+ 1), t = 0, ..., T − 1, an intensity xit
of Ai can be chosen from [0, R]. As an extremity of vary-
ing intensity, preemption is also allowed. The sum of the
intensities over time has to match the original volume of the
activity (4), and the capacity constraint must be respected
(5). The release time constraint now states that Ai cannot be
processed before ri and its volume is released gradually af-
terwards (6). The objective is to minimize the total weighted

mean busy time of the activities. In the sequel, we differen-
tiate between the original problem and the variable-intensity
relaxation by denoting the first as Π, and the second as Π′.
C ′ will stand for the cost of the optimal relaxed solution.

Proposition 1 C ′+ 1
2

∑
i wi(pi+1) is a valid lower bound

on the original problem Π.

Proof: The optimal solution of Π with cost C∗ is a feasible
solution of Π′ as well, and it total weighted mean busy time
is C∗ − 1

2

∑
i wi(pi + 1) ≥ C ′. 2

The optimal solution of the variable-intensity mean busy
time relaxation can be computed using the following proce-
dure, called PrepareRelaxed(), which constructs the
schedule chronologically. At each point in time t when a
scheduling decision has to be made, the algorithm assigns
intensities to activities in the order of non-increasing µi. The
intensity of Ai will be the minimum of

• the volume of Ai that has already been released but not
yet processed, min(pi%i, (t− ri + 1)%i)−

∑t−1
t′=0 x

i
t;

• the remaining capacity for the subsequent time period.

These intensity values are applied until the scheduled vol-
ume of an activity exceeds its released volume or the release
time of another activity is reached. The algorithm finishes
when all activities are completely processed. Since the num-
ber of scheduling decisions is at most O(n2) and intensities
can be assigned in O(n) time, the overall time complexity
of the algorithm is O(n3), independently of the length of
the scheduling horizon.

Proposition 2 The above algorithm builds an optimal
schedule for the variable-intensity mean busy time problem.

Proof: Let σ be an arbitrary feasible schedule that differs
from schedule σ∗ built by our algorithm, such that the dif-
ference cannot be characterized by an interchange of inten-
sities between activities with identical relative weights. Let
t1 be the earliest point in time and Ai1 be the activity with
the highest µi1 such that xi1t1[σ] 6= xi1t1[σ∗]. The construction
of the algorithm ensures that xi1t1[σ] < xi1t1[σ∗]. Then, there
exist a time t2 and activity Ai2 with t1 < t2 and µi1 > µi2
such that increasing xi1t1[σ] and xi2t2[σ] and decreasing xi2t1[σ]
and xi1t2[σ] preserves feasibility and improves the objective
value. Therefore a schedule that differs essentially from the
one built by the algorithm cannot be optimal. 2

Observe that the above procedure can easily be modified
to PrepareRelaxed(Ai, t), which computes optimal
relaxed solutions for restricted problems where the start time
of activity Ai is bound to t. This can be achieved by assign-
ing ri = t and µi = ∞, which gives activity Ai the largest
relative weight among all the activities and ensures that it
starts at t and processed at intensity %i throughout its dura-
tion.

From Relaxed Solutions to Bounds Tightening
Below we propose algorithms that tighten the bounds of
the start time variable domains by exploiting the above pre-
sented polynomially solvable relaxation. Similarly to the
unary resource COMPLETION constraint, propagation is

based on computing (or approximating) the cost of the opti-
mal relaxed solutions for restricted problems where an activ-
ity Ai must start at time t. This restricted relaxed problem
will be denoted by Π′〈Si, t〉, and the value of its optimal
solution by C ′〈Si, t〉. Formally, we exploit the following
proposition:

Proposition 3 IfC ′〈Si, t〉 > Ĉ, then t can be removed from
the domain of Si.

However, in contrast to the unary case, we are not
able to define efficient recomputation methods that de-
termine in a low-degree polynomial time all restricted
relaxed solution costs from one relaxed solution com-
puted by PrepareRelaxed. Instead, we apply the
PrepareRelaxed procedure to compute two relaxed so-
lutions for each activity, one for Π′〈Si = Ši〉 and another
for Π′〈Si = Ŝi〉. If either of these relaxed solutions vio-
late the current upper bound on the cost, then we estimate
how the current lower/upper bounds of Si have to be modi-
fied to achieve consistency. Since estimations are not exact,
this procedure has to be iterated until bounds consistency
is reached. The algorithm is presented in Figure 4, while
the two different earliest and latest start time approximation
methods are presented in detail afterwards.

PROCEDURE TightenBounds()
FORALL activity Ai

LOOP
σ := PrepareRelaxed(Ai, Ši)
IF cost(σ) > Ĉ THEN
Š′

i := RecomputeEarliestStart(σ, Ai)
LOOP
σ := PrepareRelaxed(Ai, Ŝi)
IF cost(σ) > Ĉ THEN
Ŝ′

i := RecomputeLatestStart(σ, Ai)

Figure 4: Algorithm for tightening the bounds of the start
time variables.

Recomputing the Earliest Start Time The earliest start
time of activity Ai is adjusted based on the optimal re-
laxed solution σ for Π′〈Si = Ši〉. In order to obtain lower
bounds for Π′〈Si = t〉 with t > Ši, we introduce procedure
RecomputeEarliestStart(σ, Ai) and a further re-
laxation as follows.

For the situation whereAi starts at t, we consider a sched-
ule σt in which intensities xjt′ with t′ < Ši or t′ ≥ t + pi
equal the corresponding intensities in σ. Activity Ai is pro-
cessed from t until t + pi at intensity %i. Otherwise, in in-
terval [Ši, t + pi] we assume that the release times of all
activities Aj with j 6= i equal Ši. Hence, those activities
will be processed in non-increasing order of µj .

This further relaxation has two advantages: firstly, only a
small section of the schedule, namely the section in interval
[Ši, t + pi] varies over different values of t. Secondly, this
section of the schedule can be represented as a queue. The

queue, as well as the cost of the schedule, is updated incre-
mentally for subsequent values of t at time O(n) for each
step. This step is iterated until the cost of σt decreases be-
low the current upper bound cost Ĉ. The earliest start time
of Ai is then updated to this value of t.

Recomputing the Latest Start Time Given an optimal re-
laxed solution σ with cost C ′ for Π′〈Si = Ŝi〉, let t∗ denote
the earliest point in time with t∗ ≥ Ŝi+pi in this relaxed so-
lution such that all the volume of the activities that has been
released before t∗ is processed before t∗:

∀j
t∗∑
t=0

xjt = min(pj%j , (t∗ − rj + 1)%j).

Furthermore, let W denote the total weight of activity frag-
ments processed between Ŝi and t∗, including activity Ai:

W =
n∑
j=1

t∗∑
t′=Ŝi

µjx
j
t′ .

Procedure RecomputeLatestStart(σ, Ai) com-
putes these values t∗ and W , and adjust the latest start time
of Ai according to the following proposition.

Proposition 4 Activity Ai cannot start later than t = Ŝi −
dC
′−Ĉ
W e.

Proof: Consider a further relaxation of the relaxed prob-
lem where, in interval [t, t∗], resource capacity is increased
from R to 2R, and the released volume of each activity Aj
is increased with

∑t∗

t′=Ŝi
xjt′ . The optimal solution of this

further relaxed problem is a schedule with all intensities in
the interval [Ŝi, t∗] in σ moved earlier by (Ŝi − t). The cost
of this schedule is exactly C ′ − (Ŝi− t)W , from which the
above proposition follows. 2

Computational Experiments
We ran computational experiments to test the efficiency of
the proposed COMPLETIONm constraint on a set of sin-
gle discrete resource scheduling problems with release times
for minimizing total weighted completion time. We com-
pared the performance of two models, one of them using
weighted sum (WS) back propagation, the other using the
COMPLETIONm constraint. The proposed propagation al-
gorithms have been implemented in C++ and embedded into
ILOG Solver and Scheduler versions 6.1. In the exper-
iments, we applied the same adapted SetTimes branching
heuristic with chronological backtracking as for the job shop
case.

The problem instances were generated with a modified
version of a previous benchmark generator for the single
unary machine total weighted completion time problem (Pan
2007). The parameters of the generator are the number of
activities, n, which we took from {15, 20, 25, 30}, the re-
source requirement range α ∈ {0.5, 1.0}, and the relative

release time range β ∈ {0, 0.2, 0.6, 1.0}. For each combi-
nation of the above values we generated 10 instances, which
resulted in 320 different problem instances.

The capacity of the resource was fixed to R = 10. Activ-
ity durations pi were randomized from [1, 100] with a dis-
crete uniform distribution, weights wi from [1, 10], and re-
source requirements %i from [1, αR]. This leads to instances
where approximately k = 2R

αR+1−
1
2 activities are processed

in parallel on the resource. Hence, the release times were
randomized from [0, 50.5nβ/k]. The experiments were run
on a 1.86 GHz Pentium M computer with 1 GB of RAM,
with a time limit of 600 seconds imposed.

The experimental results are presented in Table 1. Each
row of the table contains combined results for given values
of n and β, achieved with the WS and the COMPLETIONm
models. The results do not depend significantly on the value
of α. For either of the models WS and COMPLETIONm,
column Opt displays the number of instances out of 20 that
could be solved and the optimality of the solution has been
proven. Columns Mean RE and Max RE contain the mean
and maximum relative error compared to the best solutions
known. Column Nodes shows the average number of search
nodes, while Time presents the average search time, includ-
ing the proof of optimality, or 600 seconds where the solver
hit the time limit.

Problem instances with a low number of activities, n =
15, or with a high β were solvable easily for both models,
while instances with a greater n and a lower β often proved
hard for both models. The COMPLETIONm constraint re-
duced the number of search nodes for all the instances, often
by two orders of magnitude. On the other hand, the compu-
tational effort invested in this pruning paid off only for the
hard instances, i.e., for n ≥ 20 and β ≤ 60. For such in-
stances, the COMPLETIONm model found better solutions
and proved optimality for more instances. Easier problems
were solved more quickly with the simple weighted sum
constraint.

From the low number of search nodes with the
COMPLETIONm constraint we conclude that the applied
variable-intensity relaxation is sufficiently tight. On the
other hand, the reason of the high computational cost
was the high number of recomputation cycles within the
TightenBounds() procedure: on average, the recom-
putation of the earliest (latest) start times required 2–4 (4–
10) cycles, while in a few extreme cases, up to 100 cycles
were necessary to achieve consistency. This suggests that
more accurate earliest and latest start time recomputation
techniques are required. Further experiments are necessary
to investigate whether a better trade-off between pruning
strength and computational effort can be achieved by abort-
ing recomputations before consistency is achieved. Also, the
performance of the model with the COMPLETIONm con-
straint has to be compared to a model in which the same
relaxation is exploited in the form of a lower bound.

Conclusions
We investigated applications and extensions of the earlier
defined COMPLETION constraint. In multiple-machine

project scheduling problems, where activities linked by
precedence constraints constitute jobs, weights and perfor-
mance measures are often related to jobs. Since CP solution
techniques infer over individual activities, the assignment
of job weights to activities is a crucial issue. We defined a
weight assignment heuristic, which allocates weights to the
activities on the most loaded resource. For the criterion of
total weighted completion time in job shop problems, we
showed in computational experiments that the COMPLE-
TION constraint with this weight assignment outperforms
standard representations of the cost function.

We introduced the COMPLETIONm constraint for the
total weighted completion time of activities on a dis-
crete resource. The proposed propagation algorithms ex-
ploit a variable-intensity relaxation of the discrete-resource
scheduling problem. The new constraint achieved signif-
icant pruning in single discrete resource scheduling prob-
lems, though, due to its high computational complexity,
this did not always result in a reduction in overall solu-
tion time. Our future work will focus on the improvement
of earliest/latest start time recomputation methods for the
COMPLETIONm constraint, and investigating the possibil-
ity of developing a generic framework for cost constraints in
scheduling.

Acknowledgments This research was supported in part
by the Natural Sciences and Engineering Research Coun-
cil, ILOG, S.A, the EU FP6 Net-WMS, and the NKFP
2/010/2004 projects. A. Kovács acknowledges the support
of the ERCIM Alain Bensoussan fellowship programme and
the János Bolyai scholarship of the Hungarian Academy of
Sciences.

References
Beck, J. C., and Refalo, P. 2003. A hybrid approach to
scheduling with earliness and tardiness costs. Annals of
Operations Research 118:49–71.
Chen, B.; Potts, C. N.; and Woeginger, G. J. 1998. A Re-
view of Machine Scheduling: Complexity, Algorithms and
Approximation, volume 3 of Handbook of Combinatorial
Optimization. Kluwer.
Demassey, S.; Pesant, G.; and Rousseau, L.-M. 2006.
A cost-regular based hybrid column generation approach.
Constraints 11(4):315–333.
Focacci, F.; Lodi, A.; and Milano, M. 2002a. Embed-
ding relaxations in global constraints for solving TSP and
TSPTW. Annals of Mathematics and Artificial Intelligence
34(4):291–311.
Focacci, F.; Lodi, A.; and Milano, M. 2002b.
Optimization-oriented global constraints. Constraints 7(3–
4):351–365.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman and Company, New York.
Goemans, M. X.; Queyranne, M.; Schulz, A. S.; Skutella,
M.; and Wang., Y. 2002. Single machine scheduling

n β WS COMPLETIONm

Opt Mean RE Max RE Nodes Time Opt Mean RE Max RE Nodes Time
15 0.0 20 0.00 0.00 1221819 38.2 20 0.00 0.00 37394 50.0

0.2 20 0.00 0.00 80897 2.2 20 0.00 0.00 3073 4.6
0.6 20 0.00 0.00 5175 0.1 20 0.00 0.00 359 0.2
1.0 20 0.00 0.00 5714 0.2 20 0.00 0.00 179 0.1

20 0.0 0 0.20 1.35 17184616 600.0 9 0.00 0.00 158712 474.1
0.2 12 0.89 13.84 9344486 324.1 19 0.00 0.00 40150 108.4
0.6 20 0.00 0.00 813644 35.0 20 0.00 0.00 5866 19.0
1.0 20 0.00 0.00 3225 0.0 20 0.00 0.00 485 1.2

25 0.0 0 1.48 5.66 15877777 600.0 0 0.00 0.00 198843 600.0
0.2 0 1.36 5.96 16227105 600.0 3 0.03 0.62 210544 528.2
0.6 14 0.69 10.48 5576802 221.7 15 0.00 0.00 42145 217.4
1.0 20 0.00 0.00 410177 14.5 20 0.00 0.00 3541 13.1

30 0.0 0 2.50 8.02 16402754 600.0 0 0.00 0.00 257192 600.0
0.2 0 1.60 7.67 15847633 600.0 0 0.00 0.00 230434 600.0
0.6 5 0.67 4.88 12120552 513.5 9 0.05 1.04 77783 413.5
1.0 18 0.00 0.00 2315715 117.7 17 0.13 2.64 26355 146.4

Table 1: Experimental results: number of instances solved to optimality (Opt), mean and maximum relative error in percent
(Mean/Max RE), average number of search nodes (Nodes) and average search time in seconds (Time) with the weighted sum
(WS) constraint and with the COMPLETIONm constraint.

with release dates. SIAM Journal on Discrete Mathematics
15(2):165–192.
Graham, R. L.; Lawler, E. L.; Lenstra, J. K.; and Rinnooy
Kan, A. H. G. 1979. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics 4:287–326.
Kovács, A., and Beck, J. C. 2007. A global constraint
for total weighted completion time. In Proceedings of
CPAIOR’07, 4th Int. Conf. on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial
Optimization Problems (LNCS 4510), 112–126.
Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms. Information Processing
Letters 47:173–180.
Pan, Y. 2007. Test instances for the dynamic
single-machine sequencing problem to minimize
total weighted completion time. Available at
www.cs.wisc.edu/˜yunpeng/test/sm/dwct/instances.htm.
Régin, J. 1999. Arc consistency for global cardinality con-
straints with costs. In Proceedings of Principles and Prac-
tice of Constraint Programming (LNCS 1713), 390–404.
Sellmann, M. 2002. An arc consistency algorithm for the
minimum weight all different constraint. In Proceedings of
Principles and Practice of Constraint Programming (LNCS
2470), 744–749.
Watson, J.; Barbulescu, L.; Howe, A.; and Whitley, L.
1999. Algorithms performance and problem structure for
flow-shop scheduling. In Proceedings of the Sixteenth
National Conference on Artificial Intelligence (AAAI-99),
688–695.

