
Feasible Distributed CSP Models for Scheduling Problems∗

Miguel A. Salido
Department of Information Systems and Computation

Technical University of Valencia, Spain
msalido@dsic.upv.es

Abstract

Nowadays, many real problems can be formalized as
Distributed CSPs. A distributed constraint satisfaction
problem (DisCSP) is a CSP in which variables and
constraints are distributed among multiple automated
agents. Many researchers assume for simplicity that
each agent has exactly one variable. For real planning
and scheduling problems, these distributed techniques
require a large amount of messages passed among
agents, so these problems are very difficult to solve.
In this paper, we present a general distributed model
for solving real-life scheduling problems and propose
some guidelines for distributing large-scale problems.
Furthermore, we present two case studies in which two
scheduling problems are distributed by using our model.

Introduction
In recent years we have seen an increasing interest in Dis-
tributed Constraint Satisfaction Problem (DisCSP) formu-
lations to model combinatorial problems (see the special
issue on Distributed Constraint Satisfaction in the Artifi-
cial Intelligence journal, vol 161, 2005). There is a rich
set of real-world distributed applications, such as network
systems, planning, scheduling, resource allocation, etc, for
which the DisCSP paradigm is particularly useful. In such
distributed applications, privacy issues, knowledge transfer
costs, robustness against failure, etc preclude the adoption
of a centralized approach (Faltings & Yokoo 2005).

Briefly, a CSP consists of: a set of variables X =
{x1, x2, ..., xn}; each variable xi ∈ X has a set Di of pos-
sible values (its domain); a finite collection of constraints
C = {c1, c2, ..., cp} restricts the values that the variables
can simultaneously take.

A solution to a CSP is an assignment of values to all the
variables so that all constraints are satisfied; a problem with
a solution is termed satisfiable or consistent.

∗This work has been partially supported by the research
projects TIN2004-06354-C02- 01 (Min. de Educacion y Cien-
cia, Spain-FEDER), FOM- 70022/T05 (Min. de Fomento, Spain),
GV/2007/274 (Generalidad Valenciana) and by the Future and
Emerging Technologies Unit of EC (IST priority - 6th FP), under
contract no. FP6-021235-2 (project ARRIVAL).
Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A distributed CSP is a CSP in which the variables and
constraints are distributed among automated agents (Yokoo
& Hirayama 2000). Finding a value assignment to variables
that satisfies inter-agent constraints can be viewed as achiev-
ing coherence or consistency among agents.

The most cited papers related to DisCSP make the follow-
ing assumptions for simplicity in describing the algorithms:

1. Each agent has exactly one variable.

2. All constraints are binary.

3. Each agent knows all constraint predicates relevant to its
variable.

Although the great majority of real problems are natu-
rally modelled as non-binary CSPs, the second assumption
is comprehensible due to the fact that there exist some tech-
niques that translate any non-binary CSP into an equivalent
binary one (Bacchus & van Beek 1998).

However, the first assumption is too restrictive and the
main basic research focuses on small instances. Also, little
work has been done to solve real-life problems.

Main Features in DisCSPs
If all knowledge about the problem could be gathered into
one agent, this agent could solve the problem alone us-
ing traditional centralized constraint satisfaction algorithms.
However, such a centralized solution is often inadequate or
even impossible. Faltings and Yokoo (Faltings & Yokoo
2005) present some reasons why distributed methods may
be desirable:

• The cost of creating a central authority. A CSP may be
naturally distributed among a set of agents. In such cases,
a central authority for solving the problem would require
adding an additional element that was not present in the
architecture. Examples of such systems are sensor net-
works or meeting scheduling.

• The knowledge transfer costs: In many cases, constraints
arise from complex decision processes that are internal to
an agent and cannot be articulated to a central authority.
Examples of this range from simple meeting scheduling,
where each participant has complex preferences that are
hard to articulate, to coordination decisions in virtual en-
terprises that result from complex internal planning. A

centralized solver would require such constraints to be
completely articulated for all possible situations. This
would entail prohibitive costs.

• Privacy/Security concerns: Agents involve constraints
that may represent strategic information that should not
be revealed to competitors, or even to a central authority.
This situation often arises in many enterprises. Privacy is
easier to maintain in distributed solvers.

• Robustness against failure: The failure of the centralized
server can be fatal. In a distributed method, a failure
of one agent can be less critical and other agents might
be able to find a solution without the failed agent. Such
concerns arise, for example, in sensor networks, but also
in web-based applications where participants may leave
while a constraint solving process is ongoing.

These reasons have motivated significant research activity
in distributed constraint satisfaction. Up to now, the field
has reached a certain maturity and has developed a range of
different techniques. Nevertheless, most of the works are
focused on developing new techniques which are evaluated
using toy problems and random benchmarks.

Open Issues in DisCSPs
In spite of significant progress, there are many important
open issues in distributed CSP. The five main open issues
for using distributed CSP are the followings:

• While distributed algorithms eliminate the need for a cen-
tral authority, the currently known algorithms pay a high
price in efficiency. In general, the message traffic even for
a single agent can be higher than what would be required
to communicate the entire problem to a leader agent that
could solve it centrally. More research is required to sig-
nificantly reduce the communication requirements, pos-
sibly with radically different algorithms that are better
suited for distribution.

• Many DisCSP algorithms assumes an agent has enough
knowledge to evaluate constraints that are related to its
variables. If this is not true, some constraints may still
have to be communicated or additional communication
may be needed. Also, more research is needed on algo-
rithms that minimize the number of constraint evaluations
when evaluating constraints is costly.

• While there are algorithms using cryptographic tech-
niques to ensure complete privacy of agent constraints,
their message complexity is very high. For most other
DisCSP algorithms, there is no good characterization of
how much information is revealed to other agents. More
research is needed on measures of privacy loss and on al-
gorithms that balance the trade-off between privacy loss
and efficiency.

• While most distributed algorithms tolerate certain kinds
of agent failures, there is no good characterization of the
kind of failures that are allowed for each algorithm. In
general, this issue has not yet been given significant at-
tention in research.

• While most distributed algorithms manage only one vari-
able per agent, there are no specific distributed algorithms
to solve real-world problems in an efficient way. This is-
sue has not yet been given enough attention in research.
This paper focuses on this issue.

Other issues that are important but have received little atten-
tion so far include openness, i.e., the possibility to add and
remove agents dynamically during execution, and incentive-
compatibility, i.e., making algorithms safe against manipu-
lation by self interested agents.

From Basic Research Toward Applied
Research

One of the pioneer researchers in DisCSP said ”So far, we
assume that each agent has only one local variable. Al-
though the developed algorithms can be applied to the sit-
uation where one agent has multiple local variables by the
following methods, both methods are neither efficient nor
scalable to large problems” (Yokoo & Hirayama 2000).

• Method 1: each agent finds all solutions to its local prob-
lem first. By finding all solutions, the given problem can
be re-formalized as a distributed CSP, in which each agent
has one local variable whose domain is a set of obtained
local solutions. Then, agents can apply algorithms for
the case of a single local variable. The drawback of this
method is that when a local problem becomes large and
complex, finding all the solutions of a local problem be-
comes virtually impossible.

• Method 2: an agent creates multiple virtual agents, each
of which corresponds to one local variable, and simulates
the activities of these virtual agents. However, since com-
municating with other agents is usually more expensive
than performing local computations, it is wasteful to sim-
ulate the activities of multiple virtual agents without dis-
tinguishing the communications between virtual agents
within a single real agent, and the communications be-
tween real agents.

In spite of significant progress in distributed CSP, the fol-
lowing question is straightforward: Why is only one vari-
able per agent assumed? (Salido 2007). Only some works
include a set of variables into an agent (Silaghi & Faltings
2005),(Ezzahir & Bouyakhf 2007),(Salido & Barber 2006).
Nevertheless, few works have been focused on distributed
techniques for solving large scale problems (Yokoo et al.
1998). In this paper, we present different alternatives for
managing large scale problems. Each agent will be commit-
ted to a large number of variables and constraints and several
subproblems can be executed concurrently depending on the
internal structure.

A General Distributed Model
Depending on the problem to be considered, the distributed
model will maintain different properties. Our general model
for solving scheduling problems can be considered as a syn-
chronous model. It is meant to be a framework for inter-
acting holons/agents to achieve a consistent state. The main
idea of our holonic/multi-agent system model is based on

(Salido, Giret, & Barber 2003) in which the problem is par-
titioned into a set of subproblems; then the subproblems are
classified in the appropriate order and are solved concur-
rently. In this section, we introduce the notion of holon as
a complementary idea of agent. Depending on the schedul-
ing problem, we will use holons instead of agents. A holon
is an autonomous and cooperative unit that can be seen as
a whole and a part (Koestler 1971). Therefore, a holarchy
is a group of basic holons and/or recursive holons that are
themselves holarchies. A Holonic architecture (HMS 1994)
(Koestler 1971) is committed to organizing entities (holon or
agent (Giret & Botti 2004)) that are responsible for solving
each subproblem.

Agent

mar 1 abr

2 121154 1073 8

1

2

4

6 9

3

s11 s13s12

s11+s21

s11+s21+...+sk1

s12+s22

1 2 31 2 3 4 5 6 7 8 9 10 …

Time stepsBlock

 Agents

Problem Solutions

s1t
c(1)

a1

c2

Preprocessing

Agent c(1): block1

c(2):block2

:
c(k):blockk

Constraint

Partition

a2

c(2)

ak

c(k)

Figure 1: General Distributed Model.

Depending on the problem, it is partitioned in k blocks or
clusters in order to be studied by holons/agents called block
agents. Furthermore, a partition agent is committed to clas-
sifying the subproblems in the appropriate order depending
on the selected proposal.

Once the problem is divided into k blocks by a prepro-
cessing agent, a group of block agents concurrently man-
ages each block of constraints. Each block agent/holon is in
charge of solving its own subproblem by means of a search
algorithm. Each block agent/holon is free to select any al-
gorithm to find a consistent partial state. It can select a lo-
cal search algorithm, a backtracking-based algorithm, or any
other, depending on the problem topology. In any case, each
block agent/holon is committed to finding a solution to its
particular subproblem. This subproblem is composed by its
CSP subject to the variable assignment generated by the pre-
vious block agents/holons. Thus, block agent/holon 1 works
on its group of constraints. If block agent/holon 1 finds a
solution to its subproblem, then it sends the consistent par-
tial state to block agent/holon 2, and they both work concur-
rently to solve their specific subproblems; block agent/holon
1 tries to find another solution and block agent/holon 2 tries
to solve its subproblem knowing that its common variables
have been assigned by block agent/holon 1. This second so-

lution found by block agent/holon 1 is stored to be sent to
block agent/holon 2 if it was necessary. In this case, block
agent/holon 2 will not wait for block agent/holon 1 to search
for a new solution.

Thus, block agent j, with the variable assignments gen-
erated by the previous block agents/holons, works concur-
rently with the previous block agents/holons and tries to find
a more complete consistent state using a search algorithm.
Finally, the last block agent/holon k, working concurrently
with block agents/holons 1, 2, ...(k − 1), tries to find a con-
sistent state in order to find a problem solution.

Figure 1 shows the holonic system, in which the pre-
processing agent carries out the network partition and the
block agents/holons (ai) are committed to concurrently find-
ing partial problem solutions (sij , where i denotes the num-
ber of block agents/holons and j the jth solution). Each
block agent/holon sends the partial problem solutions to
the following block agent/holon until a problem solution is
found (by the last block agent/holon). For example, state:
s11 + s21 + ... + sk1 is a problem solution. The con-
currence can be seen in Figure 1 in Time step 6 in which
all block agents/holons are concurrently working. Each
block agent/holon maintains the corresponding domains for
its new variables. The new variables are the variables
that are not involved in previous block agent/holon. The
block agent/holon must assign values to its new variables
so that the block of constraints is satisfied. When a block
agent/holon finds a value for each new variable, it then sends
the consistent partial state to the next block agent/holon.
When the last block agent/holon assigns values to its new
variables satisfying its block of constraints, then a solu-
tion is found. It must be taken into account that if a block
agent/holon maintains too many variables or constraints, it
can be decomposed into a set of new agents/holons.

Some Guidelines for Distributing Large-Scale
Problems
To solve large-scale problems, we must distribute the prob-
lems taking into account some guidelines:

1. The number of subproblems (agents). They must be in
concordance with the size of the problem. As we have
pointed out in the previous sections, one agent per vari-
able is unmanageable. A problem with thousands of vari-
ables and constraints cannot be modelled as a distributed
model with thousands of agents due to the high compu-
tational cost in the solving process. Generally and due
to privacy issues, the number of subproblems is straight-
forward, given by the nature of the problems. Neverthe-
less, some subproblems are too large and they can be di-
vided/decomposed again into smaller ones in order to be
solved in a reasonable time. A reasonable way to divide
the problem is by means of graph partitioning techniques
(Salido & Barber 2006). However, in many real problems,
the best way to partition the problem is by carrying out a
domain dependent partition. Following, we present an ex-
ample of railway scheduling problem distributed by types
of trains and sets of stations.

2. The order in which each subproblem is executed (agent

priority). Sometimes all subproblems can be executed
concurrently and partial states are sent to their neighbours.
In many other cases, the subproblems can be ordered us-
ing a selected criteria.

• From the subproblem with the most neighbours to the
subproblems with the least neighbours.

• From the tightest subproblems to the loosest ones.
• From the subproblems that maintains hard constraints

to the subproblems with soft constraints.
• etc...

This ordering does not mean that the subproblems are
solved sequentially, but rather that some subproblems are
executed first and then all neighbours are concurrently ex-
ecuted (see Figure 1). Furthermore, this ordering, repre-
sented by priorities among agents, can change dynami-
cally depending on many factors such as number of no-
goods, number of backtracks, etc.

3. The management of backtracking. When an agent does
not find a partial solution, it must communicate its cur-
rent state to the related agents in order to avoid unneces-
sary searches. Some works decompose the subproblem
into a set of subproblems in such a way that the resultant
problem is represented as a tree. Each node in the tree
is a subproblem (Abril, Salido, & Barber 2007). Once a
node/agent finds a partial solution, it is sent to its chil-
dren, and they are solved concurrently. However, if a
node/agent does not find a partial solution, a message is
sent to its parents, and, depending on the management of
the backtracking (which parent it backtracks), the search
space will be pruned more efficiently.

4. The necessity of a central authority. As we have pointed
out, depending on the problem, a central regulatory au-
thority will be necessary or not. Many researchers sug-
gest, that for some multi-agent systems, no central regu-
latory authority is needed and can be replaced by a virtual
representation where each agent is responsible for main-
taining its own partial view of the relevant institutional
state. This is due to the fact that, if the central author-
ity fails, the problem cannot be solved. However, many
real problems are hierarchical by nature and it is neces-
sary to generate different levels of abstraction. In the next
section, we will present a global road transportation sys-
tem: a hierarchical system that maintains as many levels
as necessary, depending on the problem complexity.

Distributed Models for Distributed Scheduling
Problems: Two case studies

Many real problems are distributed by nature. However, this
distribution does not imply one variable per agent. For in-
stance, many scheduling problems are decentralized by na-
ture, and the problem is decomposed in clusters. Each clus-
ter (composed by variables and constraints) is solved by an
agent, and it communicates a consistent partial state. In this
way, a large-scale scheduling problem can be solved with
reasonable efficiency, maintaining all privacy issues. Most

of these problems are domain-dependent and general dis-
tributed models (as the model proposed above) are not ap-
propriate. Therefore, domain dependent distributed models
must be developed to efficiently manage these problems.

In this section, we present two real-life scheduling prob-
lems, which are very complex problems and are distributed
by nature. To solve them in a distributed way, we group sev-
eral compatible variables per agent so that the problem can
be solved in a reasonable time.

Railway Scheduling Problem
Train timetabling is a difficult problem, particularly in the
case of real networks, where the number of constraints and
the complexity of constraints grow drastically. A feasible
train timetable should specify the departure and arrival time
of each train to each location of its journey in such a way that
the line capacity and other operational constraints are taken
into account. Traditionally, train timetables are generated
manually by drawing trains on the time-distance graph. The
train schedule is generated from a given starting time and is
manually adjusted so that all constraints are met. High prior-
ity trains are usually placed first followed by lower priority
trains. It can take many days to develop train timetables for a
line, and the process usually stops once a feasible timetable
has been found. The resulting plan of this procedure may be
far from optimal.

The literature of the 1960s, 1970s, and 1980s related to
rail optimization was relatively limited. Compared to the
airline and bus industries, optimization was generally over-
looked in favor of simulation or heuristic-based methods.
However, Cordeau et al. (Cordeau, Toth, & Vigo 1998) point
out greater competition, privatization, deregulation, and in-
creasing computer speed as reasons for the more prevalent
use of optimization techniques in the railway industry. Our
review of the methods and models that have been published
indicates that the majority of authors use models that are
based on the Periodic Event Scheduling Problem (PESP)
introduced by Serafini and Ukovich (Serafini & Ukovich
1989). The PESP considers the problem of scheduling as
a set of periodically recurring events under periodic time-
window constraints. The model generates disjunctive con-
straints that may cause the exponential growth of the com-
putational complexity of the problem depending on its size.
Schrijver and Steenbeek (Schrijver & Steenbeek 1994) have
developed CADANS, a constraint programming- based al-
gorithm to find a feasible timetable for a set of PESP con-
straints. The train scheduling problem can also be modeled
as a special case of the job-shop scheduling problem (Silva
de Oliveira (Silva de Oliveira 2001), Walker et al. (Walker
& Ryan 2005)), where train trips are considered as jobs that
are scheduled on tracks that are regarded as resources.

We modelled the railway scheduling problem as a Con-
straint Satisfaction Problem (CSP) and it was solved by us-
ing constraint programming techniques. However, due to
the distributed nature of the problem and the huge number
of variables and constraints that this problem generates, a
distributed model was developed to distribute the resultant
CSP into semi-independent subproblems so that the solution
can be found efficiently (Salido et al. 2007).

Here, we present two ways for distributing the railway
scheduling problem. It is partitioned into a set of subprob-
lems by means of types of trains and by means of contiguous
constraints.

Figure 2: Distributed Railway Scheduling Problem by type
of trains.

Distribution by types of trains This distributed model is
based on dividing the original railway problem by means
of train types. In this model, each agent is committed to
assigning values to variables related to a train or sets of trains
in order to minimize the journey time. This partition model
takes into account some of the guidelines given above.
• Depending on the problem instance, the number of par-

titions will be given by the railway operator or by the
number of trains. Figure 2 shows a running map with
20 partitions. Each agent manages one train. Each train
generates a large number of variables and constraints, de-
pending on the number of stations and the user require-
ments. Furthermore, this model allows us to improve pri-
vacy. Currently, due to the policy of deregulation in the
European railways, trains from different operators work
on the same railway infrastructure. In this way, the par-
tition model also gives us the possibility of partition the
problem so that each agent is committed to an operator.
Thus, different operators maintain privacy about strategic
data.

• This model allows us to efficiently manage priorities be-
tween different types of trains (regional trains, high-speed
trains, freight trains). In this way, agents committed to
priority trains (high-speed trains) will first carry out value
assignment to variables in order to achieve better journey
times. This ordering is inserted into our distributed model
to solve the scheduling problem concurrently.

Distribution by set of stations This distributed model is
based on distributing the original railway problem by means
of contiguous stations. The deregulation of European rail-
way operators gives the opportunity to schedule long jour-
neys. However, long journeys involve large number of sta-
tions in different countries with different railway policies.
Therefore, a logical partition of the railway network can be

carried out by means of regions (contiguous stations).
Some of the guidelines presented above that must be taken

into account in this model are:

• The number of subproblems depends directly on several
factors: distance of the journey, number of different re-
gions (mainly countries) and railway topology. This dis-
tributed model divides the problem into a set of physical
regions. It is important to analyze the railway infrastruc-
ture in order to detect restricted regions (bottlenecks). To
balance the problem, each agent is committed to a differ-
ent number of stations. An agent can manage many sta-
tions if they are not restricted stations; however an agent
can manage only a few stations if they represent bottle-
necks.

3

1

2

4

5

Figure 3: Distributed Railway Scheduling Problem by set of
stations.

• The order in which each subproblem is executed plays an
important role. Agents committed with bottlenecks have
preference to assign values to variables due to the fact that
their domains are reduced (variable ordering). Once the
agent with the tightest constraints solves its subproblems,
both the previous agent and the following agent must con-
currently solve their own subproblems.

• The management of backtracking is very important to
avoid unnecessary constraint checking. For instance, if
agent 4 in Figure 3 finds a partial solution to its sub-
problem, it communicates to agent 3 and agent 5. Both
agents concurrently search to find their own partial solu-
tions. However, if agent 3 does not find a partial solution,
it sends a nogood message to agent 4, and this last agent
sends a message to agent 5 in order to stop its search. As
we pointed out in Figure 1, while agent 3 and agent 5
work concurrently to find their partial solutions, agent 4
also works in the same time step in order to find another
partial solution. This last partial solution will be used if
agent 3 or agent 5 backtracks due to inconsistency with
the previous partial solution given by agent 4.

Figure 3 shows the journeys to be scheduled between two
cities. They are decomposed into several shorter journeys.
The set of stations are partitioned in blocks of contiguous

stations and a set of agents will coordinate with each other
to achieve a global solution. Thus, we can obtain important
results such as railway capacity (Abril et al. 2007), consis-
tent timetable, etc.

Global Road Transportation System
During recent years the development of automated traffic
systems has received increased attention, and substantial ef-
fort has been invested in trying to find a solution to prob-
lems associated with road transport. Among these problems
are road accidents caused by human-related factors, such as
tiredness, loss of control, a slow reaction time, limited field
of view, etc. A further transport-related problem is that of
loss of time which may be caused by slow driving speed
due to weather conditions, road conditions, visibility, and
traffic congestion. In this section, we present a global road
transportation system, which is being developed by several
European Universities. The main goal of the algorithmic
section is to develop algorithms capable of creating driving
schemes for a vehicle from any arbitrary address to any other
arbitrary address (in the address space of the system), while
considering, and if necessary adapting, the driving schemes
of other vehicles travelling in the system at the same time ac-
cording to priorities, driving and optimization rules. Thus,
distributed techniques are necessary for solving these prob-
lems.

The Global Automated Transportation System (GATS)
(Zelinkovskyn) is a driverless, integrated transport system.
It has the astonishing ability to simultaneously coordinate
the macro and micro needs of road transport networks. Mil-
lions of vehicles can be optimally, simultaneously and au-
tomatically ”driven” over a virtually unlimited geographic
region, including whole continents, while the requirements
of each individual vehicle and its passengers are attended
to at the same time,. It is an innovative concept, based on
simple, recognized principles and proven technologies.

Its application will revolutionize road travel by dramati-
cally increasing safety, reducing congestion, and eliminating
driving-associated stress and fatigue. The consequence....an
overall improvement in the quality of everyday life.

Due to the decentralized and modular nature of the archi-
tecture it can be implemented with the same ease and sim-
plicity in both small contained areas such as airports and
theme parks and in larger areas such as local, national and
international road systems.

Figure 4: Driving on the System.

Following, we summarize the architecture above and be-
low the road. In the center of a traffic lane, 15-20 cm below
the road surface there is an ”Intelligent Cable” of about 1 cm
in diameter which is comprised of tiny intelligent transpon-
ders (Road-Units (RUs)) located at fixed distances (less than
a vehicle length of 3m) from each other. While driving, the

vehicle sends short radio transmissions down towards the
RUs at regular time intervals (about every 30 milliseconds).
The RU receives a transmission, processes it, and responds
with a radio transmission back to the vehicle. The vehicle
communicates continuously with the RUs one after the other
incessantly. Thus, it has continuous radio communication
with the RUs and the whole system connected to them. The
interchange of radio transmissions between the vehicles and
the RUs also facilitates lateral and longitudinal positioning
of vehicles on the road, as presented in Figure 4.

The memory of each RU stores the specifications of the
RU and individual driving instructions that it will transmit
to each vehicle above it. Several hundreds of consecutive
RUs constitute a Segment, whose functions are administered
by a Segment Controller. The Segment Controller is con-
nected to its RUs through the Parallel Buses and is respon-
sible for ”driving” the vehicles passing in its domain; per-
forming routine maintenance check-ups of the components
in its segment; and monitoring and regulating their mutual
performance. A group of adjacent Segment Controllers has
a superior controller, the Level-1 Controller, which coordi-
nates and controls its individual and mutual functions. A
group of adjacent Level-1 Controllers has a superior con-
troller: Level-2 Controller. This goes on hierarchically (Fig-
ure 5). The Top Level Controller coordinates and controls
the functions of the whole system. There is virtually no limit
to the number of levels and to the size of the geographic do-
main of the systems.

Top Level

Controller

Level 2

Controller-1

Level 2

Controller-2

Level 2

Controller-n

Level 1

Controller-1

Level 2

Controller-2

Level 2

Controller-n

Segment

Controller-1

Segment

Controller-2

Segment

Controller-n

Figure 5: Hierarchical Architecture of the System.

Integrated Functioning Assume a vehicle is in a parking
lot above a RU. The passengers turn the vehicle on, which
begins to send short radio transmissions down towards the
road. The RU detects those transmissions and responds with
radio transmissions back to the vehicle. The RU initiates a
communication session with the Segment Controller in or-
der to inform it about the new event. The passengers in the
vehicle enter their requirements as destination, priority, pre-
ferred routes etc. The vehicle’s processor sends a message
to the Segment Controller which includes the requirements,
the exact location of the vehicle relative to the RU and its
own specifications. The Segment Controller processes the

request while considering additional inputs from other RUs
in the Segment and from its superior Controller. Finally it
prepares a driving instruction message for each RU in the
Segment. The RUs will send these instructions to the vehi-
cle when it passes above them. Each message includes an
addressee (RU1 etc.), a vehicle ID, the expected arrival time
of the vehicle to the RU, the speed that the vehicle should
travel at and the driving direction. When the vehicle is driv-
ing from one RU to another, the active RU uses the Serial
Bus to inform the next and previous RUs in the sequence
about the exact timing, the ID number and other specifica-
tions of the moving vehicle. If the RUs detect intolerable
deviation from the plan, they can initiate a so-called Emer-
gency Braking Procedure. The active RU uses the Paral-
lel Bus to inform the Segment Controller with information
about the moving vehicle.

A Distributed Model for GATS Traditional Centralized
techniques fail to model and implement problems of this
type due to their complex and large nature. Due to the de-
centralized and modular nature of the architecture, the al-
gorithms to obtain the scheduling of each vehicle must be
distributed. Figure 6 shows the map of Europe to be dis-
tributed/divided into regions (countries); each region is di-
vided into sub-regions, and so on.

Figure 6: Map of Europe to be distributed.

Briefly, the system is composed by a network, where
nodes are locations and arcs are roads. Depending on the
granularity, nodes are points in the road or regions in a coun-
try. In the lower level of the system, each RU is represented
by a variable (see Figure 7). The system may be composed
of millions of RUs. As we have explained in the first sec-
tion, this problem cannot be managed by current distributed
CP techniques by using a variable per agent. By using these
approaches, the problem generates millions of agents and
messages passing in the interaction scenarios. This makes
the resulting DisCSP unmanageable.

To overcome these weakness, we use our distributed

Figure 7: Distributed model with a central authority.

model in which the problem is partitioned into subproblems
that represent regions, countries, etc (see Figure 7). Here,
we use a Holonic architecture (HMS 1994)(Koestler 1971)
to organize the entities (holon or agent (Giret & Botti 2004))
that are responsible for solving each subproblem. As we
have pointed out above, a holon is an autonomous and coop-
erative unit that can be seen as a whole and a part (Koestler
1971).

The distributed model generated for this scheduling prob-
lem follows the guidelines presented in the paper.

• The number of subproblems depends on the size of the
system. A holon can represent a track between two traf-
fic lights or represent a region or a country. Figure 7
shows two holons that represent two countries, Spain and
Italy. Each of them is be composed of a set of sub-holons
that represent regions, and each sub-holon is composed by
new sub-holons that represent sub-regions and so on. The
base case is composed of individual variables that repre-
sent RUs.

• The execution of the subproblems is carried out in two
steps. First, given the requirements of the passenger, (the
destination is the most important requirement), the cen-
tral authority is the Level i Controller that involves both
origin and destination. This Level i Controller is commit-
ted to solving the shortest path in a high level problem
(each node is a region). This path is only a first approach
that guides us to find the real shortest path. Thus, Level i
Controllers is executed first, then all Level i-1 Controller
are executed concurrently and so on. Depending on the
size of the journey, several hierarchical levels are neces-
sary. Finally, the calculated route is sent to the Segment
Controllers that are involved.

• Due to the dynamic structure of the problem, some parts
of the system may change and new schedules must be cal-
culated. The rescheduling is only calculated from the in-
cidence to the destination. The management of backtrack-

ing is carried out in a way similar to the railway schedul-
ing problem distributed by stations.

• As we have pointed out, the nature of the system makes
the presence of a central authority necessary. However,
due to the scalability of the system, the central authority
has the same behaviour as a level controller. The central
authority is the minimal level controller that involves both
origin and destination. This level depends on the problem
instance.

Conclusions
In the paper, we question the common assumption made in
DisCSP literature in which each agent has just a single vari-
able. Many real problems can be modelled as a CSP, but
they cannot be solved by using DisCSP techniques due to
the exploitation in message passing. Thus, new distributed
techniques must be developed to solved large instances of
real problems. In this paper, we present a general distributed
model for solving large-scale problems and some guidelines
for distributing these problems by relaxing the above as-
sumption. We present two real-life problems which can be
modelled as a distributed problem. They manage several
variables per agent in order to solve these problems in a rea-
sonable time. These problems follow some of the presented
guidelines.

References
Abril, M.; Barber, F.; Ingolotti, L.; Salido, M.; Tormos, P.;
and Lova, A. 2007. An assessment of railway capacity.
Transportation Research Part E-Logistics and Transporta-
tion Review, to appear.
Abril, M.; Salido, M.; and Barber. 2007. DFS-tree based
heuristic search. In Proceeding of the Seventh Symposium
on Abstraction, Reformulation and Abstraction (SARA’07),
LNAI 4612, to appear.
Bacchus, F., and van Beek, P. 1998. On the conversion be-
tween non-binary and binary constraint satisfaction prob-
lems. In proceeding of AAAI-98 311–318.
Cordeau, J.; Toth, P.; and Vigo, D. 1998. A survey of op-
timization models for train routing and scheduling. Trans-
portation Science 32:380–446.
Ezzahir, R., B. C. B. M., and Bouyakhf, E.-H. 2007.
Dischoco: A platform for distributed constraint program-
ming. In Proceedings of IJCAI-07 Workshop on Dis-
tributed Constraint Reasoning.
Faltings, B., and Yokoo, M. 2005. Introduction: Special
issue on distributed constraint satisfaction. Artificial Intel-
ligence 161:1–5.
Giret, A., and Botti, V. 2004. Holons and Agents. Journal
of Intelligent Manufacturing 15:645–659.
HMS, P. R. 1994. HMS Requirements. http://hms.ifw.uni-
hannover.de/: HMS Server.
Koestler, A. 1971. The Ghost in the Machine. Arkana
Books.

Salido, M., and Barber, F. 2006. Distributed CSPs by graph
partitioning. Applied Mathematics and Computation. Ed.
Elsevier Science 183:491–498.
Salido, M.; Abril, M.; Barber, F.; Ingolotti, L.; Tormos, P.;
and Lova, A. 2007. Domain-dependent distributed mod-
els for railway scheduling. Knowledge Based Systems. Ed.
Elsevier Science 20:186–194.
Salido, M.; Giret, A.; and Barber, F. 2003. Distributing
Constraints by Sampling in Non-Binary CSPs. In IJCAI
Workshop on Distributing Constraint Reasoning 79–87.
Salido, M. 2007. Distributed CSPs: Why it is assumed
a variable per agent? In Proceeding of the Seventh
Symposium on Abstraction, Reformulation and Abstraction
(SARA’07), LNAI 4612, 407–408.
Schrijver, A., and Steenbeek, A. 1994. Timetable construc-
tion for railned. Technical Report, CWI, Amsterdam, The
Netherlands.
Serafini, P., and Ukovich, W. 1989. A mathematical model
for periodic scheduling problems. SIAM Journal on Dis-
crete Mathematics 550–581.
Silaghi, M., and Faltings, B. 2005. Asynchronous aggrega-
tion and consistency in distributed constraint satisfaction.
Artificial Intelligence 161:25–53.
Silva de Oliveira, E. 2001. Solving single-track railway
scheduling problem using constraint programming. Phd
Thesis. Univ. of Leeds, School of Computing.
Walker, C., S. J., and Ryan, D. 2005. Simultaneous dis-
ruption recovery of a train timetable and crew roster in real
time. Comput. Oper. Res 2077–2094.
Yokoo, M., and Hirayama, K. 2000. Algorithms for dis-
tributed constraint satisfaction: A review. Autonomous
Agents and Multi-Agent Systems 3:185–207.
Yokoo, M.; Durfee, E.; Ishida, T.; and Kuwabara, K. 1998.
Distributed constraint satisfaction algorithm for complex
local problems. Third International Conference on Multia-
gent Systems (ICMAS-98) 372–379.
Zelinkovskyn, R. Global automated transport system.
http://www.global-transportation.com.

