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Abstract

Distributed or multi-agent planning extends classical AI plan-
ning to domains where several agents can plan and act to-
gether. There exist many recent developments in this dis-
cipline that range over different approaches for distributed
planning algorithms, distributed plan execution processes or
communication protocols among agents. One of the key is-
sues about distributed planning is that it is the most appropri-
ate way to tackle certain kind of planning problems, specially
those where a centralized solving is infeasible. In this pa-
per we present a new planning framework aimed at solving
planning problems in inherently distributed domains where
agents have a collection of private data which cannot share
with other agents. However, collaboration is required since
agents are unable to accomplish its own tasks alone or, at
least, can accomplish its tasks better when working with oth-
ers. Our proposal motivates a new planning scheme based
on a distributed search of heuristic information and on a con-
straint programming resolution process.

Introduction
Distributed planning is the problem of finding a course of
actions that will help a set of agents collectively satisfy cer-
tain desired goals. Due to an inherent distribution of re-
sources such as knowledge and capability among the agents,
an agent in a distributed planning system is unable to ac-
complish its own tasks alone, or at least can accomplish its
tasks better when working with others (Durfee 2001). Dis-
tributed planning is still an open challenge, and there is an
increasingly number of applications that can benefit from
this research area: cooperative robotics (Wehowsky, Block,
& Williams 2005) (Sirin et al. 2004), composition of seman-
tic web services (Wu et al. 2003), manufacturing systems
(Hahndel, Fuchs, & Levi 1996), etc.

The literature cites many reasons for which multi-agent
planning is an interesting approach to pursue. One of these
reasons is to split the problem into smaller subproblems
which are usually easier to solve. This divide-and-conquer
approach has been used in several distributed planning pro-
posals (Rehak, Pechoucek, & Volf 2006) (Cox, Durfee, &
Bartold 2005). In these approaches, multiple agents plan to
achieve their individual goals independently and, then, these
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individual plans are merged into a global plan. The coordi-
nation/merging process is usually the most costly part since
it is necessary to avoid cross-working or duplicating effort.

Another reason that often comes up is that of privacy
(van der Krogt 2007). Especially in circumstances where
the agents represent companies, sharing data with other par-
ties is considered undesirable. At the same time, it is well
recognized that cooperation may be mutually beneficial to
all parties. In this paper we present a new planning frame-
work aimed at solving problems of this type. Specifically,
we will address problems with the following characteristics:

• Distributed domains. In these domains there exists an in-
herent distribution of resources such as knowledge and
capability among the agents. This way, agents are clearly
identified, so a problem decomposition stage is not re-
quired.

• Privacy. Agents maintain a set of private data, which
are the beliefs that the agent will never share with other
agents. The goals of an agent are also private, although it
may require help from other agents to achieve them.

• Collaboration. In this framework, an agent often needs
help from other agents to achieve the necessary conditions
for executing an action. However, even though actions
are jointly planned, they are individually executed, that
is, agents do not get synchronized to carry out a same ac-
tion jointly (for example, several robots pushing a single
block together into a target area). This latest type of co-
ordination is usually addressed in team-oriented planning
approaches, where several agents collaborate to achieve a
common global goal.

The presented approach is useful to solve planning prob-
lems in inherently distributed domains where a centralized
solving process is not affordable. Additionally, agents have
a collection of private data which cannot share with other
agents so information exchange among them can only be
achieved through the public or sharable data. Our proposal
motivates a new planning scheme based on a distributed
search of heuristic information and on a constraint program-
ming resolution process. The overall approach is a dis-
tributed CSP resolution for solving the kind of problems that
fit well a multi-agent planning paradigm.

The remainder of this paper is structured as follows. We
begin by defining the problem characteristics and showing



a representative problem example. Then, we present a gen-
eral overview of our approach and we describe the main two
stages of the planning algorithm. Finally, we show some ex-
perimental results and we present our conclusions and future
work.

Problem definition
Our approach is particularly aimed at solving problems
which develop in inherently distributed domains. In this type
of problems, agents are clearly identified so it is not neces-
sary to apply a problem decomposition because there exists
a natural partition/distribution of the problem itself.

Definition 1. An agent is an entity with planning capabili-
ties and thus we can specify an agent as a tuple Ag = 〈Adj,
G, I , A, m〉 where:
• Adj is the set of adjacent agents. An agent ag′ is adjacent

to an agent ag, ag′ ∈Adj(ag), if the public information of
ag′ is accessible from ag. This relationship is symmetric:
ag′ ∈ Adj(ag) ⇐⇒ ag ∈ Adj(ag′). An agent can only
collaborate directly with its adjacent agents, consulting
and/or modifying their shared information.

• G represent the individual goals of the agent. These goals
are not visible from other agents.

• I is a set of propositions that represents the agent’s
beliefs. This knowledge is classified in private (non-
sharable) and public (sharable): I = 〈Ip, Is〉. The private
information, Ip, is a set of propositions that are not ac-
cessible from other agents. On the contrary, interactions
between agents are possible through their public reposi-
tory: other agents can consult and add propositions to Is.

• A is the set of actions that can be applied in the domain.
This information, which represents the agent skills, is not
accesible from other agents. As a typical planning action,
an action a is a triple 〈pre(a), add(a), del(a)〉, where the
preconditions, pre(a) and the effects, add(a) and del(a),
are sets of propositions. These propositions can be agent
beliefs (public or private) or public beliefs from adjacent
agents:
∀p ∈ pre(a) ∪ add(a) ∪ del(a) / a ∈ A(ag),

p ∈ I(ag) ∨ p ∈ Is(ag′) : ag′ ∈ Adj(ag)
• m is the optimization function (or metric). The agent must

try to achieve its goals with the minimum cost according
to this function.

Definition 2. A planning problem consists of finding a (par-
tially ordered) sequence of actions that leads the system
from its initial state to a goal state. Formally, it is defined
as a tuple 〈Ag, I, G,A〉, where:
• Ag is a set of agents.
• I is the problem initial state, which is the union of the

agents’ beliefs:

I =
⋃
∀ag∈Ag I(ag)

This initial state is globally consistent because informa-
tion is not replicated in different agents:

∀ag, ag′ ∈ Ag, I(ag) ∩ I(ag′) = ∅

• G is the problem goal, which is the union of the individual
goals of all agents:

G =
⋃
∀ag∈Ag G(ag)

• A is the problem actions, which is the union of the indi-
vidual actions of all agents:

A =
⋃
∀ag∈Ag A(ag)

Definition 3. A global plan is a partially ordered set of pairs
(ag, a), where ag is an agent and a is an action of that agent
(a ∈ A(ag)). The execution of a by ag causes a transition
in the ag’s state and, possibly, in the public beliefs of ad-
jacent agents. Thus, a global plan is valid if the execution
of all actions in the plan (by their corresponding agents and
respecting the ordering constraints) on the initial state leads
to a final state where all problem goals hold.

The cost of a global plan is computed as the sum of the
cost of all actions in the plan, according to the metric func-
tion defined in their corresponding agent. Therefore, metric
functions of all agents must be defined by the same measure
unit and the same scale. This simplification facilitates the
computation of the plan quality, but it may not be adequate
for certain problems where the optimization function of one
agent gets into conflict with the objective of another agent.
This problem will be addressed in a future work to improve
the applicability of our problem model.

There are many real problems that fit the distributed prob-
lem paradigm we have described in this section. In the fol-
lowing subsection, we show a simple example that we will
use through the rest of the paper to illustrate our proposal.

Problem example
In this section, we show a simple example from a transporta-
tion and storage problem. In this problem we can identify
two types of agents: warehouses and transport companies.

In each warehouse, there is a storage area and a loading
area. In the storage area, packages can be stacked and un-
stacked onto a fixed set of pallets by means of a hoist. All the
information about the storage area (packages, stacks, ...) in
a warehouse is private, so it is not visible from other agents.
Packages can also be moved from/to the loading area. The
loading area of a warehouse is public, so packages in that
area are visible from the adjacent agents of the warehouse.
In general, the goal of a warehouse is to get a certain pack-
age distribution inside its storage area, and the metric func-
tion is to minimize the number of stack, unstack and move
operations carried out to achieve its goal.

A transport company manages the transportation of pack-
ages between a set of warehouses located in the same geo-
graphic area. All the information about the truck fleet and
the set of routes they use is private. Transport companies
access the loading area of the warehouses to pick up and
deliver packages. The optimization function in these com-
panies is to minimize the total number of truck movements.

There are three agents in our example: two warehouse
agents, w1 and w2, and a transportation agent t1. In the ini-
tial state, agent w1 has tree packages (a, b and c) and agent
w2 has two (e and d), organized as Figure 1 shows. The
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Figure 1: Initial state in the distributed planning example.

transportation agent has only one truck (truck1) and links
both warehouses. Warehouse agents are only adjacent to the
transportation agent, so warehouses cannot communicate in-
formation among themselves.

We use the following predicates in this example:

• on ?pkg1 ?pkg2, which states that package pkg1 in on
package pkg2.

• at-la ?pkg, which indicates that package pkg is in the
loading-area of the warehouse.

The goal of agent w1 is to get the package b on top of
package e, that is, on b e. The position of the remain-
ing packages in the warehouse is not relevant. The goals of
agent w2 are on d a and on a c. Agent t1 has no indi-
vidual goals.

The multi-agent planning approach that we propose in this
paper can help agents in situations such as described in this
example. It offers a way to co-operate while being in control
of which information is shared and with whom.

Distributed planning scheme
Collaboration is required as agents usually cannot reach
their individual goals without the help of the other agents.
This help is provided through a set of abstract operations
which we call services.

Definition 4. A service is an abstract operation that an agent
offers to another agent to fulfill a set of public propositions,
which we call the service goal. Internally, a service is a
(partially ordered) set of actions (local plan), but how an
agent provides a service is kept as private information.

Additionally, we define an internal service as an abstract
operation that an agent computes for achieving its individual
goals (in this case, the propositions in the service goal can
be private). From now on, when we use the term service, we
will refer to both services and internal services.

For providing a service, an agent may require the execu-
tion of one or more services from other agents. This way,
the global planning problem consists of finding a partially
ordered set of services that allows all agents to achieve their
individual goals. The distributed planning process is started
by the agents with individual goals to accomplish. The first
step for these agents is to find out the pieces of information,
which we call requirements, that they require from other
agents in order to achieve their goals.

Definition 5. A requirement is a public proposition or a
disjunction of public propositions that an agent needs from
other agents to achieve its goals or to provide a service.

This way, a service can be seen as a planning operator,
where the service requirements correspond to the operator
preconditions and where the service goal corresponds to the
operator effects.

In the proposed example, agent w2 has to stack package
d on top of a and package a on top of c, but packages a
and c are not in the warehouse. Therefore, the only way to
achieve its goals is to get packages a and c in its loading
area. Then, the requirements are at-la a and at-la c.
In the proposed example, requirements are always single
propositions, but in other problems they can be disjunction
of propositions. If, for instance, warehouse w2 had two dif-
ferent loading areas (la1 and la2), then the requirements for
reaching its goals would be: (at-la1 a ∨ at-la2 a)
and (at-la1 c ∨ at-la2 c).

Agents with requirements to fulfill have to ask their ad-
jacent agents for help. The first stage of the planning algo-
rithm is a message exchange process to find out what ser-
vices agents can provide and for computing an estimated
cost of these services. Once the set of available services
has been established, the global problem is solved through
a collaborative planning process, which is modeled as a dis-
tributed CSP. Both planning stages are described in detail in
the following two sections.

Cost estimate of the services
In this stage, agents send messages to their adjacent agents
to request services for satisfying their requirements. An
agent that needs a proposition sends a service request mes-
sage to its adjacent agents asking for the cost of that service.
Only one proposition is requested in a single message. If
a requirement contains disjunctive propositions, then these
propositions are individually requested in separated mes-
sages. These service request messages contain the following
information:

• aorig: the requesting agent.

• adst: the target agent.

• p: the requested proposition.

• R: the message route, which is the sequence of agents the
message has passed by (the target agent is not included).
This information avoids infinite message loops.

• Id: the message identifier. Each time a message is propa-
gated, a number is added at the end of the Id. This number
is the same for all propositions in a requirement (that is,
for disjunctive propositions) but different for propositions
in different requirements.

Let’s suppose that an agent has the following require-
ments: (p1 ∨ p2) and p3. The message identifier, for ex-
ample, will be ”1” for requesting p1 and p2 (in separated
messages), and ”2” for requesting p3. Through the mes-
sage identifier and the message route parameters, an agent
that receives several messages can easily find out if all the



requested propositions are required or if some of them are
disjunctive, that is, alternative ways to satisfy a requirement.

When an agent that receives a service request cannot pro-
vide the service, it returns an infinite cost as a reply. Other-
wise, the agent must:

• Analyze the necessary requirements to provide the ser-
vice.

• Ask its adjacent agents for help if required.
• If the requirements can be achieved, compute a plan to

estimate the cost of the service. This cost is sent back as
reply to the service request.

Additionally, if an agent receives two single different
messages with non-disjunctive requested propositions, it au-
tomatically creates a new service for achieving both propo-
sitions together. This combination of propositions is done
because achieving several proposition altogether is usually
less costly than handling each subgoal independently and
thus it will positively affect the plan quality.

However, since it is not affordable to compute all possi-
ble combinations, we will only consider the number of 2-
combinations from a set with n non-disjunctive propositions
(n∗(n−1)/2) plus one k-combination for k > 2. This calcu-
lation makes about n2/2 number of combinations to study;
this relaxation provides a good trade-off between computa-
tional cost and quality.

This message exchange process requires the agents to
keep some information about the received messages and the
requested and provided services. For each agent, the stored
information is the following:

• Messages database (MsgDB): in this database the agent
stores the received service request messages (the format
of these messages was described above).

• Service database (SerDB): it stores the offered services.
Tuples are in the form 〈G, aorig , NecReq, MinReq,
minReqCost, Plan, cost〉, where:

– G is the service goal, that is, the conjunction of propo-
sitions the service achieves.

– aorig is the agent that requested the service.
– NecReq is the set of requirements needed to provide

the service.
– MinReq is a conjunction of propositions that satisfy

the service requirements (NecReq) with the minimum
cost. For each requirement with disjunctive proposi-
tions, the alternative with the minimum cost is selected.

– minReqCost is the estimated cost to achieve
MinReq.

– Plan is the internal plan that allows to achieve G, as-
suming that the requirements hold.

– cost is the estimated service cost, which corresponds to
the Plan cost, computed according the metric function
of the agent.

• Requirements database (ReqDB): this database stores the
service request replies, that is, the cost of the services re-
quested to other agents. This information is stored in tu-
ples of the form 〈G, cost, adst〉, where:

– G is the service goal.
– cost is the service cost, that is, the estimated cost to

achieve the propositions in G.
– adst is the agent that provides this service.

Algorithm in Figure 2 shows the behaviour of agent adst

when it receives a service request from agent aorig . In this
algorithm, we have used the following functions:

• Unreachable(p): returns true if no action allows the agent
to achieve proposition p, regardless of the preconditions
of that action holds or not.

• ComputeNecessaryRequirements(p): this function returns
the necessary requirements to achieve p.

• RequirementsAchieved(NecReq): returns true if
NecReq can be satisfied.

• ComputeMinimumRequirements(NecReq): returns the
set of propositions that satisfies NecReq with the mini-
mum cost.

• ComputePlan(S, G): returns a plan to achieve the set of
propositions G from the initial state S.

• PlanCost(Plan): returns the cost of Plan according to
the defined problem metric.

• Conjunctive(p1, p2): returns true if both propositions are
conjunctive. This can be easily computed through the
route and the identifier of their respective messages.

• ServiceCombination(G): this method computes the cost
of a service that achieves all propositions in G. Therefore,
the minimum requirements and a new plan to achieve
G must be computed. If this service is less costly than
achieving all propositions in G separately, then a message
containing this information is delivered to the requesting
agents.

At the end of this process, each agent has a list of ser-
vices with an estimated cost for each one of them. Since
the purpose of these services is to help other agents achieve
their requirements, each agent must compute a set of internal
services to achieve its own goals. Agent w1, for example,
will compute an internal service for satisfying its goal ’on b
e’. Combinations with other services are also studied, in the
same way as shown in Figure 2.

Tables 1, 2 and 3 show the services offered by agents w1,
w2 and t1 respectively. The first column assigns a num-
ber to each service. The second column shows the service
goal: each proposition is preceded by the requesting agent.
The third column indicates the service cost, without taking
into account the cost of the requirements. The last column
shows the necessary requirements to provide the service:
each proposition is preceded by the agent that can achieve
it with the minimum cost.

Collaborative planning
In the literature we can find some proposals for solving col-
laborative planning tasks (Cox, Durfee, & Bartold 2005)
(Rehak, Pechoucek, & Volf 2006). These works address



double ServiceRequest (aorig , adst, p, R, Id) begin
// Check if this service was previously computed
if ∃ T ∈ SerDB / T .G = {p} then
return T .cost + T .minReqCost

// Necessary requirements computation
if Unreachable(p) return ∞
NecReq ←− ComputeNecessaryRequirements(p)
// Ask for help to achieve the new requirements
∀ a ∈ Adj(adst) ∧ a 6∈ R do
∀ r ∈ NecReq /
@ T ∈ ReqDB : T .G = {r} ∧ T .adst = a do

cost←− ServiceRequest(adst, a, r, R ⊗ adst,
Id ⊗ newIdPart)

if cost 6=∞ then
ReqDB = ReqDB ∪ 〈{r}, cost, a〉

// Service cost
if ¬ RequirementsAchieved(NecReq) return∞
MinReq ←− ComputeMinimumRequirements(NecReq)
minReqCost =

∑
∀r∈MinReq min(T .cost),
∀ T ∈ ReqDB / r ∈ T .G

Plan←− ComputePlan(CurrentState ∪MinReq, {p})
planCost←− PlanCost(Plan)
SerDB = SerDB ∪ 〈{p}, aorig , NecReq, MinReq,

minReqCost, Plan, planCost〉
// Combination of services
C = {p}
∀ T ∈MsgDB / Conjunctive(T .p, p) do

C = C ∪ {T .p}
ServiceCombination({T .p} ∪ {p})

if |C| > 2 then ServiceCombination(C)
return planCost + minReqCost

Figure 2: Service request processing.

a different problem than ours, since they follow a divide-
and-conquer approach, but the key idea is the same: us-
ing POP (Partial Order Planning) techniques (Penberthy &
Weld 1992). POP techniques are very appropriate for dis-
tributed planning since no explicit global state is required.

Instead of developing a new distributed POP algorithm,
we have chosen to convert the planning problem into a dis-
tributed constraint satisfaction problem (disCSP). The rea-
sons for this decision are:

• There are many distributed CSP algorithms (Yokoo &
Hirayama 2000) and some available platforms, such as
DisChoco 1.

• A planning problem can be easily formulated as a CSP
and experimental results show that this approach can be
very competitive (Vidal & Geffner 2006).

The goal of this process is to obtain a final global plan,
which is a partially ordered list of services that each agent
will have to carry out. In order to establish the order between
these services, each service will have an associated starting
time. The steps for obtaining this global plan are described
in the following subsections.

1Available at http://www.lirmm.fr/coconut/dischoco/

Table 1: List of services of agent w1.
# Service goal Cost Requirements
1 {t1:at-la a} 6 ∅
2 {t1:at-la c} 2 ∅
3 {t1:at-la a, t1:at-la c} 6 ∅
4 {w1:on b e} 6 {t1:at-la e}
5 {t1:at-la a, w1:on b e} 8 {t1:at-la e}
6 {t1:at-la c, w1:on b e} 6 {t1:at-la e}
7 {t1:at-la a, t1:at-la c,

w1:on b e} 8 {t1:at-la e}

Table 2: List of services of agent w2.

# Service goal Cost Requirements
1 {t1:at-la e} 2 ∅
2 {w2:on d a} 6 {t1:at-la a}
3 {t1:at-la e, w2:on d a} 6 {t1:at-la a}
4 {w2:on a c} 4 {t1:at-la a, t1:at-la c}
5 {w2:on a c, w2:on d a} 8 {t1:at-la a, t1:at-la c}
6 {t1:at-la e, w2:on a c} 6 {t1:at-la a, t1:at-la c}
7 {t1:at-la e, w2:on a c,

w2:on d a} 8 {t1:at-la a, t1:at-la c}

Table 3: List of services of agent t1.

# Service goal Cost Requirements
1 {w1:at-la e} 2 {w2:at-la e}
2 {w2:at-la a} 1 {w1:at-la a}
3 {w1:at-la e, w2:at-la a} 2 {w2:at-la e, w1:at-la a}
4 {w2:at-la c} 1 {w1:at-la c}
5 {w1:at-la e, w2:at-la c} 2 {w2:at-la e, w1:at-la c}
6 {w2:at-la a, w2:at-la c 1 {w1:at-la a, w1:at-la c}
7 {w1:at-la e, w2:at-la a, {w2:at-la e, w1:at-la a,

w2:at-la c} 2 w1:at-la c}

Selecting the agent priority
In this type of decentralized algorithms is necessary to es-
tablish an order/priority between the participating agents.
Moreover, this order substantially affects the performance
of the search.

Experimentally, we have observed that the most efficient
order assignment is to set the highest priority to the agent
with the lower number of services (internal services are not
considered). In the proposed example, w2 is the agent with
highest priority since it only has one non-internal service:
the service #1. The rest of services are internal.

The next agent in the priority order is the agent that pro-
vides a higher number of services to agents with an already
assigned priority, an so on. In the proposed example, t1 is
the agent that provides more services to w2. Finally, w1 will
be the agent with the lowest priority.



The reasons for these ordering criteria are the following:

• The agents with a higher number of services and, con-
sequently, with a greater number of variables and con-
straints, have low priorities. This way, the agents that
have to make a greater computation effort are the last in
the CSP solving process, thus minimizing the number of
required backtracks.

• Following an assignment order according to the services’
causal links, we maximize the number of shared variables
and constraints between two consecutive agents. Then,
when an agent communicates its partial solution to the
next agent, it is possible to prune the domains of the vari-
ables efficiently.

Formulating the problem as a CSP
Each service can be easily translated into a PDDL operator:
the requirements correspond to the operator’s preconditions
and to the delete effects (if they do not hold after the service
execution), the service goals correspond to the add effects,
and the service cost can be modeled as a numeric fluent.
For example, the third service of agent t1 (see Table 3) is
translated as follows:

(:action t1-Service3
:parameters()
:precondition (and (w2-at-la e)

(w1-at-la a))
:effect (and (not (w2-at-la e))

(not (w1-at-la a))
(w1-at-la e) (w2-at-la a)
(increase (cost) 2)))

Based on the works of (Vidal & Geffner 2006) and
(Refanidis 2005), we can translate these planning opera-
tors/services into a CSP formulation. For this formulation,
we have defined the following integer variables:

• Inplan(o) ∈ [0,1], represents wether the operator o is in
the final plan (value 1) or not (value 0).

• Start(o) ∈ [0,∞], represents the start time of o.

• Support(p, o) ∈ O, where O is the set of operators that
can provide proposition p for o. Thus, these variables rep-
resent the causal links between the agent services.

• Time(p, o) ∈ [0,∞], is the time when the causal link
Support(p, o) happens.

If an operator o is included in the plan (Inplan(o) = 1),
then the following constraints must hold:

• The operator that produces p for o must be in the plan:
Support(p, o) = o′ −→ Inplan(o′) = 1.

• Preconditions of o must hold before its start time:
Time(p, o) ≤ Start(o).

• The duration of an operator is one time unit (we are not
working with durative actions), so its effects are achieved
one unit of time after the operator’s start: Support(p, o)
= o′ −→ Time(p, o) = Start(o′) + 1.

• Mutex relationship between an operator o that requires p
and other operator o′ in the plan that deletes p: Start(o)
6= Start(o′) + 1.

• Threat resolution by promotion or demotion when an op-
erator o′ in the plan deletes a proposition p that is re-
quired by o: (Start(o′) + 1 < Time(p, o)) ∨ (Start(o)
< Start(o′)).

Each agent is in charge of dealing with the variables and
constraints that are related to its own services. However,
there are some variables and constraints that must be shared
between two agents. This occurs when the results of a ser-
vice provided by an agent are required by other service of
another agent. In this case, the agent with the highest prior-
ity will assign a value to the shared variables, whereas the
other agent will check the shared constraints.

Heuristics
The formulation of a planning problem as a CSP requires
the definition of a great number of variables and constraints.
For instance, there are 227 variables and 781 constraints in
the proposed example (57, 86 and 84 variables and 182, 297
and 302 constraints for agents w2, t1 and w1, respectively).
In order to improve the efficiency of the CSP solver, we have
defined some additional constraints and a specific value se-
lection heuristic for the Inplan variables.

One reason for the problem complexity is the high num-
ber of services that arise from the requirement combinations:
if two conjunctive propositions, p1 and p2, have been re-
quested to an agent, that agent automatically computes a
new service that jointly achieves p1 and p2. Evidently, if
the service to achieve p is included in the plan, the service
to achieve p1 ∧ p2 will not be included (and the other way
around), since both services represent alternative ways to at-
tain p. To model this fact in the CSP formulation, we have
included the following constraints: if two operators in an
agent, o and o′, produce a proposition p, then both opera-
tors are mutually exclusive in the plan: (InP lan(o) = 1 −→
InP lan(o′) = 0) ∧ (InP lan(o′) = 1 −→ InP lan(o) = 0).
These additional constraints substantially improve the solv-
ing process performance.

The most costly part for the CSP solver is to find out what
operators must be included in the plan, that is, to make a
feasible value assignment for the Inplan variables. For this
reason, each agent tries to make a good initial value assign-
ment for these variables:

• A set with the requested propositions is computed for each
adjacent agent. The agent itself is also considered as an
adjacent agent as internal services can be seen as self-
requests.
For agent w2 in the proposed example, these sets are the
following:
Requests of agent t1: {at-la e}
Self-requests: {on d a, on a c}

• A set of services/operators is computed to satisfy each set
of requested propositions with the minimum cost.
Following the example, these sets of services for agent w2
are the following:



Table 4: Final plan for the proposed example.
Time Agent Service Description
0 w1 #3 Move packages a and c to

the loading area
0 w2 #1 Move e to the loading area
1 t1 #7 Transport a and c to w2

and e to w1
2 w2 #5 Stack a on c and d on a
2 w1 #4 Stack b on e

Services for the requests of agent t1: {service #1}
Services for the self-requests: {service #5}
The Inplan variables for the operators corresponding to
these services (see Table 2) are initially set to 1, and the
rest of operators are set to 0.

This value selection heuristic increases the solving pro-
cess performance outstandingly, above all when the selected
operators are finally included in the plan.

Distributed solving process

In the literature we can find several distributed CSP algo-
rithms: asynchronous backtracking (ABT), asynchronous
weak-commitment search (AWC), distributed breakout, etc.
(Yokoo & Hirayama 2000). However, we are not interested
at present in solving the problem the most efficiently as pos-
sible, but in demonstrating that out approach is viable for
solving this type of problems. For this reason, we have im-
plemented a simple sequential forward checking algorithm.
As a future work, we want to use a more sophisticated algo-
rithm in order to decrease the number of messages that the
agents need to exchange during the search.

Plan execution

At the end of the process each agent knows what services
has to execute and at what time. Table 4, for instance, shows
the final plan obtained for the proposed example. This way,
the plan execution becomes an easy task.

However, the final plan might not be completely exe-
cutable in certain cases. This is because the computation
of the estimate cost of the services is based on the prob-
lem initial state, which changes through the plan execution.
Therefore, it is possible that some services that were ini-
tially available cannot be executed later (after the execution
of other services).

If an agent must execute a service according to the global
plan, but it is not possible to achieve the goals of that ser-
vice in the current state, then it is necessary to calculate a
new global plan: the planning process is repeated again but
starting from the current situation. This solution does not
avoid the problem of dead-ends, which may appear in some
non-reversible domain. This issue will be addressed in a fu-
ture work.

Table 5: Obtained results for an increasing number of
agents.

#Ag #Serv #Vars #Constr #Msg #Time
3 21 149 781 872 0.22
4 28 198 805 8641 0.73
5 29 207 831 844 0.41
6 33 233 954 15263 2.86

Results
For the evaluation of our approach, we have defined four
problem examples with an increasing number of agents. The
first problem, with three agents, corresponds to the proposed
problem example (see Figure 1). The second problem adds
a new warehouse, w3, with an individual goal to achieve.
The third problem adds a new transport company, t2. The
last problem, with six agents, includes a new warehouse, w4
with another individual goal to solve.

The obtained results are displayed in Table 5. The first
column indicates the number of agents in the problem. The
second column shows the total number of services provided
by the agents. The third and the fourth column show the
total number of variables and constraints in the CSP formu-
lation of the problem, respectively. The fifth column shows
the number of messages exchanged during the CSP solv-
ing process. The last column shows the time in seconds for
obtaining the first solution. The distributed CSP solver has
been executed on a single computer (Pentium 4 - 3Ghz.), so
we have not considered message delays for the agents com-
munication.

The goal of this evaluation is not to show a broad range of
benchmark results (since the whole process is not fully auto-
mated yet), but to demonstrate that our approach is valid for
solving this type of problems. In spite of the current imple-
mentation can be improved in many ways, the low number
of messages exchanged and the small computation times in-
dicate that our approach can be successfully used for solving
small and medium multi-agent planning problems.

Thanks to the value selection heuristics, the plan quality
obtained in the first solution found is usually very good. In
the proposed example, for instance, the first solution found
is the optimal one. In the current implementation of the CSP
solver, the search is stopped when the first plan is found.
However, this behaviour can be easily changed to allow the
search to continue until a deadline is reached or even until
the optimal solution is found.

Conclusions and future work
In this paper, we have presented a new approach for multi-
agent planning, based on the extraction of heuristic informa-
tion and the problem formulation as a CSP. Unlike other ex-
isting proposals that follow a divide-and-conquer approach,
we focus our work on inherently distributed problems in
which agents are clearly identified. In this type of problems,
privacy is usually a key issue: agents keep private informa-
tion that they do not want to share with other agents. At the



same time, some information must be shared to allow the
cooperation between the agents, which is required to reach
their goals.

In our approach, the collaboration and the privacy be-
tween agents is achieved through the definition of services,
which are abstract operations provided by the agents. This
way, the planning process consists of two sequential steps:

• A message exchange process where agents request the in-
formation that they need to other agents and where the set
of available services is obtained. The cost of each service
is used as heuristic information for the search process.

• The problem is formulated as a distributed constraint sat-
isfaction problem and solved with CSP techniques.

Some preliminary results show that our approach can be
successfully used for solving small and medium size prob-
lems. Moreover, the quality of the solution is usually very
good.

As a future work, we want to fully automatize the plan-
ning process, using a multi-agent platform such as, for ex-
ample, JADE (Bellifemine, Caire, & Greenwood 2007).
This will allow us to test our algorithm in a wide range of
benchmark domains. On the other hand, there are some im-
provements that can be introduced in the algorithm, such as
the use a more efficient distributed CSP solving method and
the computation of new heuristics for the variable and the
value selection. Finally, there are two key points that will be
addressed in future works to improve the applicability and
utility of our proposal: the issue of the global plan quality,
allowing to define conflicting optimization functions for the
agents, and the prevention of possible dead-ends during the
planning process.
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