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Abstract 
Planning is a promising technique for Web Service 
Composition (WSC). As industrial engineers and academic 
researchers use different languages, we try to bridge the gap 
between them by extracting necessary models for planning 
from existing industrial solutions. In the mean time, Web 
Services (WS) may have multiple outcomes and we need to 
learn those possible outcomes. So in this paper, we address 
the problem of learning non-deterministic action models for 
Web Services from existing WSC solutions which are the 
Business Process Language for Web Services (BPEL4WS) 
programs. To do so, we first provide methods to translate 
BPEL4WS programs into a planning domain. This can be 
very helpful for verifying the WSC solution in BPEL4WS 
program too. And then because of the non-deterministic 
nature of Web Service we further extend the scope of 
learning action models into non-deterministic planning 
(NDP). Finally we test our approach on some samples 
provided by a popular BPEL4WS tool. This work has 
interesting consequences both from a practical and a 
theoretical point of view, and it can shorten the distance 
between AI planners and the real world.  



Introduction   
Could we always get our works done by a single Web 
Service? No. To remedy this, people brought WSC out. 
Currently, WSC is addressed by two orthogonal efforts: the 
business world has developed BPEL4WS (IBM et al., 2002) 
and WS interfaces are like remote procedure call and the 
interaction protocols are manually written; academic 
society draws their attention on WSC as AI planning e.g. 
(McIlraith & Fadel, 2002), (McDermott, 2002), (Wu et al., 
2003), (Martínez & Lespérance, 2004), (Peer, 2004), 
(Vukovic & Robinson, 2004), current advance and some 
open problems are discussed in (Srivastava et al., 2003).  



Unfortunately, although planning is one of the most 
promising techniques for WSC, the problem corresponding 
to WSC as planning is far from trivial. Obstacles such as 
knowledge-engineering bottlenecks stand in front of us 
from the beginning: manual construction of action models 
for domain descriptions is tedious and painstaking, even 
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for experts in planning community. As industry engineers 
are not familiar with Planning Domain Definition 
Language (PDDL, which is a basic format of the inputs of 
most planning tools), most existing WSC solutions are 
written in BPEL4WS. But when we use planning tools we 
expect action models to be described in PDDL. It is also 
difficult for planning researchers to describe Web Service 
with PDDL as they are not familiar with real world 
applications. So learning action models is useful and 
designing them by hand is not desirable. 



Building on these insights, in this paper we address the 
problem of learning non-deterministic action models for 
Web Services from existing WSC solutions which are 
BPEL4WS programs. Instead of building WSC solutions 
from scratch we try to learn action models from existing 
solutions. As far as we know, it is the first time that 
BPEL4WS Executable processes1 are translated into 
planning domains. This is also the first attempt to describe 
states translated from BPEL4WS programs in proposition 
set level. In the mean time, we first extend the scope of 
learning action model into NDP. Our work will eventually 
(not at current stage) relieve people from writing planning 
description for existing services, and make planning tools 
more applicable for real-world WSC problems. 



The remainder of this paper is organized as follows. For 
a better understanding for the background, we focus on 
explaining web service composition as planning, 
BPEL4WS and previous works about planning with 
BPEL4WS in the next section. A briefly introduction of 
learning action models will also be presented there. The 
architecture of our whole process will be showed in the 
Architecture section along with a pedagogical example. 
Detailed descriptions of the components will follow. 
Finally, in the last section, we summarize the paper with 
experiment results and differences with related works, 
future research directions will be identified there too. 



                                                 
1 BPEL4WS Process is a container where you can declare the activities 



to be executed and so forth. These processes are written as programs 
before being executed, and in this paper we will use BPEL4WS process 
and BPEL4WS program as interchangeable terms. BPEL4WS Process can 
be divided into two categories: Executable Process or Abstract Processes,, 
Abstract Processes can define the interfaces of WS, but only Executable 
BPEL4WS processes can address WSC.  











Background and Related Work  



Web Service Composition as Planning 
The task of WSC is to automatically sequence together 
Web Services into a composition that achieves some user-
defined objectives. As the industrial way, BPEL4WS, is 
primarily syntactical, planning as a promising technique 
has gained more and more interests from academic world.  
 Early works in this research line looked WSC as 
complex planning action composition such as in (McIlraith 
& Fadel, 2002), (McDermott, 2002), and (Peer, 2004). 
Later, researchers start to consider more and more real 
world conditions and combine tools other than planners 
such as (Martínez & Lespérance, 2004) uses knowledge 
database and (Vukovic & Robinson, 2004) tries to let WSC 
be context awareness. Many recent works like (Wu et al., 
2003) and (Kuter et al., 2004) assume that there exist 
semantic descriptions for services, and provide translation 
methods from semantic descriptions to planning action 
models. Unfortunately under most circumstances such 
descriptions are unavailable in real world applications. 



(Vukovic & Robinson, 2004) says: "By describing a 
Web service as a process in terms of inputs, outputs, 
preconditions and effect, using the metaphor of an action, 
composition can be viewed as a planning problem.", and 
the same idea is the basis of most papers in this research 
line, e.g. (McIlraith & Fadel, 2002), (McDermott, 2002), 
(Wu et al., 2003) and (Martínez & Lespérance, 2004). (Wu 
et al., 2003) further reveals that web services have 
unpredicted nature inherited from the internet, so it must be 
modeled with nondeterministic behaviors, and planning 
algorithms must work with uncertain effects. In this paper 
we will follow these works and model Web Services as 
actions with nondeterministic effects. 



The research line that involves actions with 
nondeterministic effects is NDP, which has been devoted 
to increasing interests and several extensions of PDDL 
have been proposed. Such as NADL+ (Jensen & Veloso, 
2000), NPDDL(Bertoli et al., 2003), and PPDDL (Younes 
& Littman, 2004). But as none of them is the standard 
specification and in this paper we only care about 
proposition sets as preconditions and effects, we choose to 
state an action with mathematic formulas like tuples 
instead of in a planning language.  



BPEL4WS 
BPEL4WS was first conceived in July, 2002 with the 
release of the BPEL4WS 1.0 specification (IBM et al., 
2002), a joint effort by IBM, Microsoft, and BEA. 
BPEL4WS has been designed specifically for WSC, both 
for the publishing and the execution of compositions. So 
soon after BPEL4WS was proposed, it became the 
industrial standard.  
 As BPEL4WS became more and more popular, 
researchers pay more and more attentions on it. (Foster et 
al., 2003) discusses a model-based approach to verify 
WSC, it tries to compile BPEL4WS programs into a Finite 



State Process notation (FSP) to allow an equivalence trace 
verification process to be performed. (Fu et al., 2004) 
presents a technique for analyzing interactions of 
composite web services which are specified in BPEL4WS 
format, by translating a BPEL4WS Abstract Process into a 
guarded automata and then  verifying it using a finite state 
model checker. The planning community gives its 
responses too. (Pistore et al., 2004) and (Pistore et al., 
2005) consider services that are specified and implemented 
in BPEL4WS Abstract Process and generate plans for 
WSC. (Traverso & Pistore, 2004) generates plans for 
WSC2 and than translates it into BPEL4WS programs.  



These papers show that there is equivalence between 
plans and BPEL4WS programs, so we stand on the 
shoulders of the giants and view BPEL4WS Executable 
Process as a plan and then try to extract action models, 
which are corresponding with planning descriptions of 
Web services. By reusing these methods in (Foster et al., 
2003), (Fu et al., 2004), and (Pistore et al., 2005) we can 
translate BPEL4WS programs into a plan. 



Learning Action Models 
In the last two decades, for AI planning systems require the 
definition of action models, and it happen to be one of the 
most difficult tasks to build action models from scratch, 
there came learning action models (LAM). Hence various 
approaches have been explored to learn action models from 
examples. (Wang, 1995) first learns planning operators by 
observing expert solution traces; (Balac et al., 2000) uses 
regression trees to learn action models; (Blythe et al., 2001) 
acquires action models based on a procedure in which a 
computer system interacts with a human expert; (Pasula et 
al., 2004) presents an algorithm for learning probabilistic 
STRIPS-like planning operators. These works are 
successful for fully observable domains and deterministic 
actions. Recently, there are new movements in this 
research line, (Shahaf et al., 2006) is heading for partial 
observed environment and (Yang et al., 2007) tackles 
incomplete information, but their work is still limited in the 
scope of deterministic action. Statistical methods and 
logical inferences are basic tools in these works. 
 Previous works like (Shahaf et al., 2006) and (Yang et 
al., 2007) motivated us to further extend the LAM scope. 
In the mean time although NDP is developed dramatically 
these years, there are still no previous works on learning 
non-deterministic action models until now. So in this paper 
we try to address the problem of learning non-deterministic 
action models under fully observations.  



Architecture  
Our goal is to automatically generate action models from 
existing service compositions. Here each action is 
corresponding to a specific Web Services Wi. 
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of Web Service, and this description has nothing to do with BPEL4WS. 











 
 
 
 
 
 
 
 
                    Figure 1: 
 
More specifically (see Figure 1), we assume that service 
compositions are described as BPEL4WS Executable 
processes. Given n BPEL4WS Executable processes 
B1, . . . ,Bn, the BPEL2STS module automatically translates 
each of them into a state transition system (STS from now 
on), ΣB1, . . . , ΣBn. Intuitively, each ΣBi is a compact 
representation of all possible behaviors, evolutions of the 
service composition Bi. Each ΣBi is described in terms of 
states, actions, and transitions. 



We then extract STate-Action-sTate (STAT from now 
on3 ) tuples from every ΣBi. This is done by STATExtract 
module. Finally all STAT about the same action4, are 
inputted to LAM (Learn Action Model) module. The LAM 
module will output the action model. The following 
pedagogical example will be used throughout the paper. 
Example 1: There are two simple5 solutions. They both 
call the same Web Service: BookRoom. This BookRoom 
Web Service is provided by a hotel, and will return success 
if there are available rooms and no internal errors in the 
hotel’s system (namely BookSuccess = true), else it will 
return failure (namely BookFail = true). Suppose solutions 
are WSCA and WSCB. WSCA is TryToBookRoom solution 
(See Figure 2), it calls BookRoom Web Service and set 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:WSCA Flow Chart        Figure3:WSCB Flow Chart 
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1986) as an acronym for Simplified Action Structures.  
4Here we assume the same action will have the same name in different 



programs, and vice versa. 
5WSCA is a sample of condition structure and WSCB is a sample of loop 



structure.  



 
 
 
 
 
 
 
 
System Overview 
 
BookedFlag if success, and do nothing else. WSCB is 
MakeSureToBookRoom solution (See Figure 3), and it 
calls BookRoom Web Service until success. 
 These solutions can be manually written in BPEL4WS 
programs6 (See Figure 4 and Figure 5). 



The architecture of the whole process has been shown in 
this section, along with a pedagogical example. Detailed 
descriptions of the components follow in the next three 
sections. We will state the BPEL2STS module in the next 
section, and the method which is used to extract STAT will 
be presented after that. The way to learn non-deterministic 
action models will be addressed at last. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:BPEL4WS WSCA    Figure 5:BPEL4WS WSCB  
 



From BPEL4WS to STS  
In this section we will present a method to translate 
BPEL4WS programs into STS. We will first restate the 
major elements in BPEL4WS programs and review the 
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previous related works because our work is built heavily 
on them. And then we will address the translation of 
condition structure and loop structure, which is the first 
attempt as far as we know. 



The major activities of providing and consuming WS in 
a BPEL4WS7 process include: invoke, receive, and reply. 
Other activities in BEPL4WS programs are: assign, throw, 
wait, terminate, empty, catch, compensate, and exit. These 
activities are structured by: sequence, flow, switch, while, 
pick, if, repeatUtil, forEach, link. Additionally, BPEL4WS 
processes use < partnerLink > to define WS to be invoked 
and declare variables with < variable >. < partnerLink > 
are defined in the Web Service Description Language 
(WSDL) (W3C, 2002). (Foster et al., 2003) first translates 
a subset of BPEL4WS elements into FSP, including 
sequence, switch, while, pick and flow; (Fu et al., 2004) 
projects BPEL4WS elements into a guarded automata, 
including: assign, receive, invoke, sequence and flow; and 
(Pistore et al., 2005) has handled BPEL4WS basic and 
structured activities, like invoke, receive, sequence, switch, 
while, flow (without links) and pick.  



Among those unsettled activities, some will not affect 
the state in a system, like reply, wait, terminate, empty, and 
exit, and we will not discuss them here; some are about 
exception handling, like throw, catch, and compensate, 
which we believe can be translated into condition 
structures8 . So in this paper we try to address condition 
structure (switch or if) and loop structure (while or 
repeatUntil) 9 , and we will just use if and while as example.   



Another issue we have to address is that none of these 
previous works has described states in proposition set level. 
Previous works only need to tell states apart, but we have 
to know which proposition is true in a state. So we first 
define proposition space as follows: 
Definition 1 (proposition space) A proposition space 
Prop is the set of all possible propositions in a system. 
 Then we can further define STS as (Pistore et al., 2005): 
Definition 2 (State transition system (STS)) 
A state transition system Σ is a tuple<S, S0, A, R, L> 
where: 
• S is the finite set of states; 
• S0 ⊆ S is the set of initial states; 
• A is the finite set of actions; 
• R ⊆ S × A × S is the transition relation; 
• L: S  2Prop is the labeling function.  



To build STS, we first10 have to find out the Prop (by 
PropCollection module), and then the BPEL4WS program 
can be handled by methods provided in previous works, 
especially (Pistore et al., 2005), to find out all states and 
transitions. After this, we have to further split states into if 
                                                 



7According to the newest version BPEL4WS 2.0 (OASIS, 2007).  
8This work remains undone, and it should be one of our future works.  
9forEach and link structure are special, and we left them as one of our 



future works (link structure could be very useful for us).  
10Here we suppose all actions have been listed, this can be done by look 



into the partnerLink part in BPEL4WS programs. In fact, more 
information can be found in the corresponding WSDL file. (Peer, 2004) 
and (Lerman et al., 2006) have provide interesting results, and we are 
planning to combine their ideas into our work later. 



structure and while structure in SplitState module. Finally 
we build up the labeling function L by BuildL module (See 
Figure 6). 
 
 
 
 
 
 



Figure 6: BPEL4WStoSTS 
 



PropCollection works as Figure 7. Removing unused 
variables is for less redundancy of the STS, and this will 
lead to less redundancy of the learned action model. Most 
often, the conditions in if and while structure (in 
<condition> section) are only part of a variable, here we 
use this part of a variable as an independent proposition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 7: PropCollection           Figure 8: SplitState   
 



 FindStates module is designed following BPEL2STS 
module in (Pistore et al., 2005), and we refer the readers to 
their work for more details. Simply put, here we obtain all 
states in the system. Example 2 includes an illustration of 
this process. 
 The SplitState module works based on the following 
assumption: there must be an action which affects the 
variable that is used in <condition>. Its flow is illustrated 
in Figure 8. Here the states come from the same action is a 
pair and the one we made up is the pair state of the 
original state. 
    Finally, in BuildL (Build Labeling function) module, we 
first let all propositions be false in the initial state and then 
change the propositions according to the transitions (result 
of FindStates). We assign different values to the 
proposition corresponding to the condition to the pair state. 
Example 2: The results of PropCollection for WSCA in 
Example 1 are:   
PropWSCA= {CustomerName11  , BookedFlag, BookSuccess} 
Then FindStates will work like Figure 9, and SplitState 
will work like Figure 10.12   
                                                 



11CustomerName is a Boolean flag, not a variable. 
12The results of BuildL are proposition sets which represent states, we 



choose to omit details here for the concise of this paper.  
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Figure9: FindStates Result        Figure 10: SplitState Result 



Extracting State-Action-State Tuples  
Previous works look a Web Service as a planning action, 
and they even provide the theorems about the equivalence 
of WSC/planning problem (Wu et al., 2003), the 
application evolution/planning state evolution (Pistore et 
al., 2005), and the WSC solution/plan (Wu et al., 2003; 
Pistore et al., 2005).  In this section, we will further project 
BPEL4WS programs into plans in NDP as (Wu et al., 2003) 
and (Pistore et al., 2005). After this projection we view 
STAT as the possible outcomes for actions in a NDP 
system and extract STAT from STS. 
 Following (Cimatti et al., 2003), we define planning 
domain, planning problem and plan as follows: 
Definition 3 (planning domain) A nondeterministic 
planning domain is a 4-tuple D = < P; S; A; T >, where: 
P is the set of propositions; 
S is the set of states; 
A is the set of actions; 
T: S×A×S is the transition function. It associates to each 
current state s ∈ S and to each action a ∈ A the set T(s, a) 
⊆ S of next states. 
   Here we can see that STS in Definition 2 is a NDP 
domain with an initial state. In NDP, initial states are 
defined in a planning problem: 
Definition 4 (planning problem) A nondeterministic 
planning problem is a tuple <D; I; G>, where: 
D = <P; S; A; T> is a nondeterministic planning domain. 
I∈S is the initial state. 
G∈S is the goal state. 
 Combining with the goal, a STS will lead to a planning 
problem, and we can generate a plan:  



Definition 5 (plan) A plan for a planning problem < D; I; 
G> is a set of state-action pair <s, a >, where:  
s is a state; 
a is an action that can be applicable in s. 
 And there is at most one action for one state. 



(Pistore et al., 2005) has shown that a BPEL4WS 
process can be translated into a STS. From the algorithm 
and examples in last section, we can see that any state must 
have one and only one action after it, this is exactly a plan. 
The proof of the equivalence of plan and BPEL4WS 
process is the same with (Wu et al., 2003) and (Pistore et 
al., 2005). 



Extracting State-Action-State Tuples 
We can extract state-action pairs from the STS we build in 
last section as plan, but considering non-deterministic 
actions may have different effects, we have to extract 
STAT tuples (for LAM Module). 



This algorithm is pretty naïve: we use R as STAT tuples, 
and for every element in R ⊆ STS we use the first state and 
the action as a state-action pair, all these pairs consist a 
plan13 . 
Example 3: In Example 2, we extract plans as follows (We 
use S0 for initial state and SG for goal state from here): 
Plan = { {S0, Assign Action 1}, { S1, BookRoom}, { S2, 
Assign Action 2}, { S2’, Exit}, } 
STAT = {{S0, Assign Action 1, S1}, { S1, BookRoom, S2}, 
{ S1, BookRoom, S2’},{ S2, Assign Action 2, SG}, { S2’, 
Exit, SG} }.   



Extracting Action Models  
In the last two sections, we discuss how to transfer a 
BPEL4WS program into a STS, and we address the 
problem of extracting STAT. In this section we will finally 
provide solutions for extracting action models from STAT. 



LAM Module Architecture 
LAM module has three components14 : it first convert all 
STAT instances into its schemas, and then extract 
preconditions from all STAT schemas, and end with the 
extraction of the effects. The Instance2Schema component 
uses the same idea and method in (Yang et al., 2007), and 
this conversion might be necessary for all LAM works15 . 
 
 
 
 
 



Figure 11: LAM Module Architecture 
                                                 



13This plan will not contribute to action model learning, but this has 
never been done before, and it might be useful in occasions like WSC 
solution verification as in (Foster et al., 2003).  



14Another component which is in charge of extracting the condition 
effects is under construction.  



15We refer readers to (Yang et al., 2007) for more details. Simply put, it 
replacing all constants by their corresponding variable types. 
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Preconditions Extraction 
The extraction of preconditions is an inductive learning 
method. We check every state before the action in all 
STAT schemas: if a proposition p belongs to every one of 
them then it is a part of preconditions. 
Example 4: In Example 1, we finally have STAT about 
BookRoom action as: 
STAT = {{ SA1, BookRoom, SA2}, { SA, BookRoom, SA2’},  
{ SB1, BookRoom, SB2}, { SB, BookRoom, SB2’}} 
Here we suppose SA* is from WSCA and SB* is from WSCB. 
The states before BookRoom are: 
SA1 = {CustomerName = true, BookedFlag = false, 
BookSuccess = false} 
SB1 = {CustomerName = true, BookFail = false} 
Then the precondition for BookRoom should be: 
Precondition = { CustomerName = true}.   



Effects Extraction 
We use a Case Based Reasoning (CBR) way for effects 
extraction. Before we move on, some terms should be 
introduced. 
Definition 6: (Static Assumption) There are no exogenous 
events in a system, so no changes happen to the states 
except those performed by the controller. 
 This assumption is a basic assumption for classical 
planning (Ghallab et al., 2004). Like most works in 
planning community, our methods are based on this 
assumption. 
 To further tell the effects of an action apart from the 
context, we need a definition for the changes. 
Definition 7: (CPS) Suppose p is a proposition, Prior is 
the set of propositions for the state before action in STAT 
and Tail is the set of propositions for the state after action 
in STAT. If p∈Tail and p ∉ Prior, than p is a changing 
proposition (CP). All changing propositions consist of 
Changing Proposition Set (CPS). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 12 : Category Algorithm Flow Chart 



 For every STAT16 , we run the Category Algorithm, see 
Figure 12. 
Example 5: In Example 1, there are two STAT (ignoring 
the pair states): 
STAT = {{ SA1, BookRoom, SA2},   { SB1, BookRoom, 
SB2}} 
The CPS for STAT are : 
CPSA = { BookSuccess = true } 
CPSB = { BookFail = true } 
And the effects are: 
Effect1 = { BookSuccess = true } 
Effect2 = { BookFail = true }.  
 This can be converted into extensions of PDDL like 
NADL+, NPDDL, and PPDDL. For example, it can be like 
the following in NPDDL: 
Example 6: The result of Example 5 can be (not being 
included in our work yet) converted into NPDDL format as: 
(:action action_name 
:precondition (and (CustomerName = true)) 
:effect (and 
(oneof (BookSuccess = true) (BookFail = true))) 
 Obviously, for BookRoom service in Example 1 
BookSuccess and BookFail are mutex flags, but we can 
only know they are two possible out comings. In fact, 
without any human or semantic tools help, we can never 
tell what the relations among these effects are. This is one 
of the two reasons (the other will be stated at the end of 
this section) why our action models can be used for only 
the input domain. But if we can use these models as partial 
model for further learning, these action models can be used 
in similar domains. 



Conditional Effects 
Learning conditional effects component of LAM module is 
under construction. As far as we know in previous works 
only (Shahaf et al., 2006) handles a very limited form of 
this problem. When moving to the non-deterministic field, 
learning conditional effects becomes more complicated as 
we have to tell conditional effects and non-deterministic 
effects apart. 



Correctness 
After the whole process, we now address the problem of 
the correctness of LAM. 
Definition 8 (LAM Fairness Assumption): A set of LAM 
samples is fair if they satisfy the following requirements, 
here we suppose p is a proposition, Pre is the precondition 
of the action and Eff is one of the effects: 
1. If p ∉ Pre than there exists a STAT, where s is the state 



before action and p ∉ s. 
2. For every Eff, there exists a STAT, where Eff is the 



CPS of it. 
According to our precondition extraction method, if 



there exists a STAT, where s is the state before action and 
                                                 



16Here we will not use the pair state that was created in SplitStates 
module in “From BPEL4WS to STS” Section, for it is made up to 
represent the non-deterministic nature of the action. 
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p ∉ s, then p must not belong to every schema. So p will 
never be included in the precondition set. Similarly, 
reasoning goes with the effect proposition set. So 
apparently, under LAM Fairness Assumption the result of 
ExtractPrecondition module will not include propositions 
other than the precondition, and all the effects will be 
categorized in ExtractEffects module. This means we need 
a large number of WSC solutions to build a reliable action 
model, and it is the other reason why our learned action 
models can be used for only the input domain. 



Conclusion and Future Work  
In this paper, we address the problem of learning non-
deterministic action models for Web Services from 
existing WSC solutions which are BPEL4WS programs.  
To do so, we first provide methods to translate BPEL4WS 
programs into a planning domain (STS), and then we 
extract STAT from STS, and extract action models from 
STAT at last. 



We first use BPEL2STS module to translate a 
BPEL4WS program into a STS and then extract STAT 
tuples from STS, finally all STAT tuples are given to LAM 
module, to extract action models. In BPEL2STS, we first 
collect all relevant propositions, and then find states and 
transitions in BPEL4WS programs. The result of 
BPEL2STS is STS, and STAT can be easily extracted from 
it. In LAM, we use the propositions which appear in every 
prior state of the action in STAT as precondition of the 
action. Finally, under Static Assumption, we use different 
CPS as different effects. According to the reasoning in last 
section, under LAM Fairness Assumption, LAM module 
will output right action modules (see Example 4 and 
Example 5). 



We test our approach on samples provided by 
ActiveBPEL17 , e.g. async_echo, loanApprovalProcess18



 



(LAP for short), multi-start_receives, repeatUntil, validate, 
and While samples.  As these samples are not designed for 
non-deterministic action learning, we have to give each of 
them a corresponding program (to use more than one 
possible out comings of services). Part of the test results 
are listed in Table 1. 



 
Basic 
Sample 



Number of 
Programs 



Number of 
ND-actions 



Basic 
Structure 



BookRoom 2 1 If/While 
LAP 2 1 If 
repeatUntil 2 1 While 



Table 1: Part of the test examples 
 



As a difference with previous work in this direction, we 
first translate BPEL4WS Executable processes into a 
planning domain. This can be very helpful in two ways: 
Learning action models for Web Services, and verifying 
WSC solutions in BPEL4WS programs. As our major 
                                                 



17http://www.activebpel.org/samples/samples-3/samples.php. 
18It is the sample used by (Fu et al., 2004), too. 



contributions, learning action models from existing WSC 
solutions could eventually relieve people from manually 
writing action models for services. Meanwhile, it makes 
planning tools available for WSC solution verification. The 
gap between industry standards and academic researches 
could be bridged by our approach. Moreover we further 
extend the scope of learning action model into NDP. The 
methods we present in this paper can be used in other 
circumstances where non-deterministic action models need 
to be extracted.  



Our work has a lot of original ideas here. First, from the 
WSC aspect of view, unlike (McIlraith & Fadel 2002), 
(McDermott, 2002), (Wu et al., 2003), (Martínez & 
Lespérance, 2004), (Vukovic & Robinson, 2004) and (Peer, 
2004), we consider the new trend in Web Service, the 
BPEL4WS.19 Second, from the BPEL4WS using and 
translation point of view, unlike (Foster et al., 2003),  (Fu 
et al., 2004), (Traverso & Pistore, 2004) and (Pistore et al., 
2005),  we first address the problem of translating 
BPEL4WS Executable process into a planning domain. 
Third, from the learning action model point of view, unlike 
(Wang, 1995), (Balac et al., 2000), (Blythe et al., 2001), 
(Pasula et al., 2004), (Shahaf et al., 2006) and (Yang et al., 
2007), we first consider non-deterministic actions. 



But this by no means is the end of the story. First, at 
current stage, we can only handle a subset of BPEL2.0, and 
it is a huge challenge for us to fully cover it. Second, the 
conditional effects learning module is pretty hard but 
necessary. Third, motivated by (Peer, 2004) and (Lerman 
et al., 2006), we are trying to get models from WSDL files 
and learn action models based on these partial models. If 
we can get this done, we can also use learned models as 
partial models in similar domains.  Finally if we could 
extend our work into partial observable environment, it 
would be more useful because most industry solutions are 
not complete, some even not sound.  
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Background and Purpose 
The International Space Station (ISS) planning process is 
manually intensive and time-consuming, and efficiencies 
must be gained to ensure the process will scale as the 
European Space Agency (ESA) and the Japan Aerospace 
Exploration Agency (JAXA), attach their modules to the 
ISS. For this reason, the planning team at Johnson Space 
Center (JSC) has been seeking new tools and processes 
that promise to streamline existing processes and 
strengthen their constraint management and resource 
modeling capabilities. 
 
The User-Centered Technology (UCT) group at NASA 
Ames Research Center developed a web-based 
collaboration platform that JSC ISS Planners felt may 
assist in streamlining their planning work with other 
NASA Centers and IPs, ultimately reducing the rework 
required on ISS crew plan iterations. To ensure the 
deployment of the tool would be as successful as possible, 
the UCT team determined they would first need to better 
understand the ISS planning process–activities, priorities, 
tools, people, and pain points–to know how to best support 
the collaborative functions of this group. With the 
assistance of Sylver Consulting, a research and customer-
driven innovation firm, the UCT team conducted a three-
month ethnographic study of ISS planning practices and 
procedures. 
 
Study results made it clear the sole addition of a 
collaboration tool will not solve problems in the ISS 
planning process.  Instead, ISS Planners need to focus on 
expanding the current planning tools’ capabilities to 
answer needs such as: 



• Reducing the manual intensity of the ISS planning 
process 



• Making it easier to gather and manage constraint data, 
and 



• Simplifying the integration of plans across system 
platforms, among others. 



 
This paper will provide an objective viewpoint into the 
current challenges of ISS planning, as of December 2006. 
Specifically, we discuss 11 challenges and potential 
solutions surrounding efficient product generation – one of 
the main goals of ISS Planners (there are others). Some of 
the challenges focus on technical limitations of the various 
applications the ISS planning teams use, while others refer 
to cultural or political issues that effect how the Planners 
operate. All challenges, whether technical, cultural, or 
political are extremely important, as they become the basis 
of design criteria for system development.  
 



Research Methods 



Objectives 
The primary goal of the research, sponsored by JSC, was to 
understand how collaboration was defined and executed 
within ISS planning teams. Objectives included 
understanding: 
• How groups within the same NASA Center worked 



together 
• How groups from different NASA Centers and IPs 



worked together 











•  The tools that groups use to complete collaborative work 
(both formal and informal technologies) 



 
A secondary goal of this project was to use the research 
findings as a catalyst for defining opportunities and design 
criteria for tool development and process improvement. 



Data Collection 
The research team used qualitative research methods, 
specifically Design Ethnography, to collect data. Design 
Ethnography combines user-centered design methods with 
ethnographic techniques to gain a deep understanding of 
people and their relationships to each other, their 
environments, the objects they use to accomplish their 
tasks, and the artifacts they produce. This methodology 
provided us with techniques to analyze and uncover 
patterns of behavior that could be translated into design 
criteria and guidelines for system development (Salvador 
and Mateas, 1997). 
 
In total, we spent nine days in the field, conducting twenty 
one-on-one interviews and fifty hours of observation 
sessions (both on- and off-console) with ISS Planners at 
JSC, Marshall Space Flight Center (MSFC), and the 
European Space Agency (ESA) at DLR in 
Oberpfaffenhoffen, Germany. We spoke with people in the 
following ISS planning positions: 
 
• ISS Planning Group Leads (all three locations): Group 



leads manage and coordinate the work efforts and tool 
development initiatives of both the long-range and real-
time planners at each of their respective locations. 



• Operations Planners (Ops Planners) at JSC: OPs 
Planners are long-range planners, and are tasked with 
establishing the initial time line for the increment. Their 
work begins 9 months in advance. Activities include 
gathering requirements for the mission, planning the 
activities into the mission increment and refining plans 
until they are execution-ready (5 days-out from 
execution). JSC OPs planners are also the master 
integrators of the various plans generated by MSFC and 
Russia. 



• Real-Time Planning Engineers (RPE) at JSC: RPEs sit 
on-console making real-time changes to plans that are 0-
5 days out. Most typically, the RPE that sits on-console 
in the “front-room” (Mission Control Center) 
concentrates on altering the plan that is currently being 
executed. While the RPE, serving the “back-room” of 
on-console alters plans 1-3 days out that are prompted 
by real-time changes to the current plan being executed. 



• Payload Planning Managers (PPMs) at MSFC: PPMs 
are long-range planners at MSFC. They build payload 
activity timelines. They also gather requirements for the 
mission, plan the activities into the mission increment 
and refine plans until they are execution-ready. 



• Operation Controllers (OCs) at MSFC: OCs are the 
real-time planners for MSFC. They sit on-console at 
MSFC monitoring payload activity and answering any 
questions regarding safety and technical specifications. 
They make real-time changes required of plans being 
executed. 



• Columbus Long-range Increment Planners (CLIPs) at 
ESA: CLIPs are the long-range planners for ESA. Work 
tasks include gathering requirements for the mission, 
planning the activities into the mission increment and 
refining plans until they are execution-ready (5 days-out 
from execution). This role is still being defined by ESA 
as they are still in the process of developing plans for the 
execution of the Columbus module, scheduled for 
October 2007. 



• Columbus Operation Planners (COPs) at ESA: COPs 
are the real-time planners for ESA. They will sit on-
console monitoring the execution of plans and altering 
plans 5-days out to reflect needed change prompted by 
real-time changes to the plan being executed. COPs are 
currently training for this role, participating in a number 
of simulations. This role will become fully active in 
October for ESA’s Columbus flight. 



Research Analysis 
The analysis phase was split into two activities – 
synthesizing data from the field into meaningful results, 
and using those results as the catalyst for a two-day 
“Translating Insights into Opportunity Workshop,” 
facilitated by Sylver Consulting. The goal was to integrate 
domain expertise in planning and software development 
with the research findings for the purpose of creating a set 
of design criteria the ISS Planning team could use in future 
tool and process development. A multi-disciplinary team of 
JSC planners and members of the UCT team attended the 
workshop. 



ISS Planning Background 
ISS Planning involves the complex tasks of prioritizing, 
negotiating, and finalizing crew activities for a given 
amount of time. Planning work begins when NASA’s 
Program Office issues a Program Document for an 
increment, an ISS mission timeframe (typically six 
months).  
 
Various planning activities are done to create the following 
seven main “planning products”:  
• Ground Rules and Constraints (GR&C) document 
• On-orbit Operations Summary (OOS) 
• Weekly Look-ahead Plan (WLP) 
• Short-Term Plan (STP) 
• Short-Term Planning (STP) notes 
• On-orbit Short-Term Plan (OSTP) 











• Planning Product Change Request (PPCR) 
 
Planning activities at JSC are divided into long-term and 
short-term timeframes. Long-term planners are responsible 
for plans that are five-days or further out, and deal mainly 
with negotiating crew time and constraint management. 
Short-term planners sit on console and deal with all real-
time and next-day planning issues. 
 
Plans move from long-term to short-term at five-days out 
and are transferred from one planning system to another at 
one week out. 
 
Other NASA Centers and International Partners (IPs) have 
their own tools to do ISS planning work partly due to 
development politics and budgets, but also because JSC’s 
tools do not meet everyone’s needs.  



Planning Challenges 
Eight systems are used to produce the seven ISS planning 
products mentioned above. These are: email, telephone, 
Microsoft Word, Microsoft Excel, User Requirements 
Criteria (URC), Operation Preparation and Data Collection 
System (OPDCS), Consolidated Planning System (CPS), 
and the On-orbit Short-Term Plan Viewer (OSTPV). 
 
The graph below illustrates the variety of systems used to 
generate each of the planning products across Centers and 
IPs. Please note: The graph represents only the major 
planning tools and systems used by JSC, MSFC and ESA, 
as these were the research participants. Russia and JAXA 
have their own planning systems that are not represented 
here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It is the number of systems and limited integration between 
them that cause the inefficiencies of rework and multiple 
reviews in the ISS planning process. The following section 



details the challenges experienced and the issues they 
cause at various points in the process. 
 
Challenge #1: Requirements gathering for generating 
the Ground Requirements and Constraints (GR&C) 
document vary dramatically across Centers and IPs 
The Program Office at NASA and each of the IPs 
generates a Program Document for each increment mission 
of the ISS. This document outlines all of the activities that 
should be accomplished during the course of the increment 
and the amount of time the Program Office expects each 
activity to take. Activities noted are prioritized within this 
document, which ultimately assists the ISS planning teams 
in making trade-offs between activities as the increment 
progresses. 
 



 
 
Each Center and IP is responsible for scoping the activities 
that live within the Program Document and fall under their 
particular expertise or country. How each Center and IP 
gathers input from experts, specialists, and flight 
controllers to identify the ground rules and constraints 
associated with each activity differs considerably. Both 
MSFC and ESA use formal systems to collect their ground 
rules and constraints, while JSC’s approach is more 
informal, relying on inputs through email and 
conversations.  
 
MSFC uses the User Requirements Criteria (URC) system 
to scope and define the US Payloads that will happen 
within an increment. Payload Activity Requirements 
Coordinators (PARCs) assist the Payload Developers 
(PDs) in outlining the user requirements of each payload 
activity, while the Payload Planning Manger (PPM) 
interprets these inputs for the creation of their ground rules 
and constraints modeling within the Consolidated Planning 
System (CPS).  
 
ESA uses their Operation Preparation and Data Collection 
System (OPDCS) to gather all the ground rules and 
constraints associated with all ESA-related ISS activities. 
The first version of this system was implemented in 
October 2006, in preparation for the attachment of the 
Columbus module to the ISS. The intended process for 
collecting an activity’s ground rules and constraint is 
similar to that of MSFC. The only exception is that, 
development efforts will make it possible for users to input 
their own data directly into the OPDCS system.  
 











JSC employs the least structure in the collection of the 
ground rules and constraints, collecting inputs via email 
telephone, the loop system, and in-person conversations. 
These inputs are collected and categorized in a Microsoft 
Word document. 



Challenge #2: Requirements gathered to model 
activities do not carry through all planning 
products generated in the process  
Ground rules and constraints collected are the required 
inputs to begin constraint-modeling activities. MSFC 
gathers their constraints through the User Requirements 
Criteria (URC) system, but it does not have the robust 
constraints modeling the Consolidated Planning System 
(CPS) has. ESA intends to collect their constraints in the 
same manner as MSFC; however, their plan is to build this 
capability into their Operations Preparation and Planning 
System (OPPS). The OPPS is ESA’s global planning 
system. JSC, on the other hand, does no constraint 
modeling, so they rely on the Gr&C document to guide 
their plan development.  
 
Constraints outline the dependencies associated with ISS 
activities. The constraint models embedded in the CPS file 
alert planners when they have re-planned an activity in a 
manner that challenges the constraint logic. 
 
JSC chooses not to use the constraints modeling feature in 
CPS because files become to large for their system to 
handle in an efficient manner. JSC’s under-utilization of 
the constraint modeling capability is problematic to the 
overall ISS planning process because inputs from MSFC 
and ESA containing constraint data must be reworked to fit 
JSC’s preferred CPS format. This causes frequent intense 
manual reviews to make sure everything is included. This 
current process is unsustainable as IPs become centrally 
involved in planning work because more IPs mean more 
and longer manual reviews. Also, all constraint data is lost 
from the plan and must be relocated in a separate 
document. 



Challenge #3: Various systems are used to 
generate the On-orbit Operations Summary 
(OOS) and the Weekly Look-ahead Plan (WLP) 
The OOS and the WLP are similar in they are both a 
broad-brush stroke of the increment’s daily activities. The 
WLP is a more detailed version of the OOS. It is the 
instance in which all Centers and IPs have the opportunity 
to understand if their “best guess” of the OOS is relevant 
once it is modeled and laid out in CPS. 
 
 
 
 



JSC models both the OOS and WLP in Microsoft Excel. 
Currently, crew time is the most important resource that 
must be tracked, but CPS is not an effective tool for doing 
this. CPS does not provide adequate constraint 
management tools to make effective decisions, so planners 
rely on Excel, multiple conversations with experts, and 
multiple iterations. As a workaround, JSC created the WLP 
to assist in tracking crew time associated with various ISS 
activities. 
 
The WLP Excel worksheet uses macros to help Planners 
track crew time. For example, if a certain activity requires 
over the allotted six hours of a specific crew member’s 
time per day, then the “total crew time” box turns gray. 
This enables the planning teams to understand if they need 
to reiterate the plan and how much time they need to “free 
up.” 
 
An additional function of the WLP Excel Worksheet is the 
use of color-coding according to JSC customer. For 
instance, MSFC’s payload activities are shaded one color, 
while Russia’s activities are another. This enables JSC to 
account for the amount of crew resources each entity has. 
The information is then used in planning negotiations at 
weekly meetings with MSFC and the IPs. 
 
MSFC and ESA both use CPS to model the OOS and WLP 
because their systems feed the constraints data directly into 
CPS. 



Challenge #4: JSC must spend a great deal of time 
merging plans only to deconstruct them later 
JSC is the integrator of the master plan so they receive 
MSFC, Russia, and ESA’s inputs to the OOS and WLP via 
CPS files. JSC must convert the CPS files into a format 
that can be used by Excel in order to review the plan 
holistically and accurately. 
 
JSC uses Mr. Planner, a tool that converts CPS files into 
Excel files. Any changes made to the WLP worksheet 
during the meetings cannot be made directly into the Excel 
document because Mr. Planner cannot convert the Excel 
file back to a CPS file. 
 
After each International Execute Planning Team (IEPT) 
meeting, each Center and IP makes any changes to the plan 
that are associated with their Center or country activities. 
The day before the next IEPT meeting the CPS file is due 
to JSC. Once again, they convert the data into a format 
exportable and readable by the Excel-based WLP 
spreadsheet. 
 
The need for intense manual reviews increases as the plan 
transitions from CPS into the On-orbit Short-Term Plan 
Viewer (OSTPV) because constraint models that were 











embedded in the CPS plan are stripped off the file. This 
requires the Lead Real-time Planning Engineer (RPE) to 
inherently know the constraint models so that she/he may 
act quickly in a real-time, re-plan.  
 
At the short-term plan phase of the ISS planning process, 
the Long-Range Planners are focused on outlining all the 
procedural data and special instructions associated with 
accomplishing the goals and objectives of each planned 
activity. Each of the three teams uses CPS for this work. 
 
Challenge #5: Limited integration between CPS 
(the long-range planning system) and OSTPV (the 
real-time execution planning system) requires JSC 
to create Short Term Plan (STP) Notes to fill the 
information gaps 



 



 
 
 
 
 
 
Once approved, the Short Term Plan (STP) is converted 
into the OSTPV plan one week out from the execution 
date. The plan data from CPS is exported into OSTPV to 
be used on console. However, the OSTPV version has no 
constraint modeling, activity dependencies, or procedural 
instructions as it did in CPS. JSC generates STP Notes 
including this information to go along with the OSTPV 
version.  
 
STP Notes is a Microsoft Word document that outlines any 
special instructions or procedural steps associated with an 
ISS activity. JSC manually recreates STP Notes from the 
procedural data included in the CPS-formatted STP plan. 
Any activity deviations from the master plan are recorded 
in the STP Notes. 



Challenge #6: Special operating instructions are 
disassociated from the execution plan 
The STP Notes are transferred to the Real-Time Planning 
group. The Lead RPE manages this document during the 
plan’s execution. STP Notes are only visible to the 
planning teams, and therefore, whenever changes are 
requested in the system, the Lead RPE must be involved to 
ensure that all constraints and special requests associated 
with this activity change are respected.  



Challenge #7: Disassociated operation instructions 
impact the cognitive stress levels of the Lead RPE 
The Lead RPE is constantly pulled in multiple directions at 



the same time. They are responsible for managing change 
requests to today’s plan, tomorrow’s and the next day’s. 
And because the STP Notes are disassociated from the 
execution plan, the Lead RPE also performs a customer 
service function for the real-time operations team. 
 
Every change to the plan requires two conversations, one 
to assess the impacts of a change and the other to actually 
request that the change be made. Integrating the special 
operating instructions with the execution plan would result 
in one less interaction per change request required of the 
Lead RPE, which ultimately would promise to bring more 
focus to the position. 



Challenge #8: Dual work is occurring to keep both 
the OSTP and CPS plans current 



 
 
Changes to the plan are requested via a Planning Product 
Change Request (PPCR). It takes three individuals to 
approve the PPCR before any changes are made.  
 
Once the request is approved, changes must be made to 
both CPS and OSTPV systems, as they are not linked. At 
the same time, any changes made at JSC must be manually 
made at MSFC and the IPs.  



Challenge #9: OSTPV was developed to 
compensate for the non-robust and non-user 
friendly functionality of CPS 
Prior to September 2006, CPS ran on a slow UNIX-based 
operating system. While it was deemed inefficient and 
frustrating by the Long-Range planners, it was absolutely 
unacceptable to Real-Time Planners as it hindered the 
safety of mission execution, so the planners developed 
OSTPV.  
 
OSTPV is widely accepted through out NASA as the 
planning tool for real-time operations even though it has 
numerous shortcomings. OSTPV does not represent 
constraint data from CPS and activities must be 
manipulated individually as relationship data is not carried 
over. 
 
JSC’s current vision includes expanding the capabilities of 
OSTPV to resource modeling so it can replace CPS and 
bring more cohesion to the planning process. This vision is 











politically charged as MSFC and Russia have structured 
their entire planning processes around CPS. To date, there 
is no decision regarding what will happen in the future to 
CPS or OSTPV.  



Challenge #10: System ownership impacts tool 
development and system sustainability 
The simplistic answer for fixing the problem of having 
multiple systems that produce multiple products is to have 
fewer and smarter systems. However, system ownership is 
an issue to NASA and the IPs.  An outside contractor owns 
CPS, while the Planners owns OSTPV. Requests for 
changes to the CPS system take eight months to a year and 
a half to be implemented, and many times, do not meet the 
planers’ needs. Changes to OSTPV can be implemented at 
any time because it is owned by the Planners. 
 
For this reason, it is unlikely OSTPV will be replaced. Due 
to the integration of CPS into the core of MSFC and 
Russia’s planning processes, CPS may also never be fully 
replaced. The guide post in future development needs to be 
about finding the simplest interface between the two 
systems. 



Challenge #11: Every plan executed gets reviewed 
excessively before execution 
Every plan is reviewed a minimum of eleven times before 
execution. The function of each of the reviews is to 
identify errors and omissions in the mission’s plan. 
However, the lack of integration between systems requires 
the plans to be manually manipulated to compensate for 
information that does not appropriately get converted from 
one system into another. The constant manual 
manipulation of the increment plans increases the 
opportunity for error. Therefore, plans must be continually 
critiqued from the same viewpoint to ensure that manual, 
human error did not alter previously agreed upon aspects 
of the plans. 
 
Below is a graph that explains in detail the various types of 
reviews that are conducted on an increment day’s plan and 
the function or purpose of that review. 
 
 
 
 
 
 
 
 
 
 
 
 
 



The highlighted reviews are iteratively reviewed for the 
same purpose. Lack of integration between CPS (where the 
STP plan is generated), and OSTPV (where the execution 
plan is created) cause the need for these stringent reviews. 
Different people are involved and accountable for the 
outcomes of the STP reviews than the flight controller 
reviews. 
 



Understanding 11 Challenges + Development 
Guidelines = Potential Solutions 



There are multiple ways to help the planners overcome 
their challenges. We could throw technology at the 
problems, but that causes procedural and budgetary issues. 
We could tackle them from a policy angle, but again, that 
does not address the technology limitations illustrated in 
the challenges.  
 
Instead, we used the research as a catalyst for solution 
development by holding a two-day “Translating Insights 
into Opportunity” co-development workshop with the UCT 
team, ISS planners, and the Ames Planning and Scheduling 
team. The focus of the session was to brainstorm potential 
solutions to the 11 challenges from the research using the 
following development guidelines, stating that all solutions 
must: 
• Reduce the manual intensity of the ISS planning process 
(i.e. manual reviews, dual work) 
• Make it easier to gather and manage constraint data 
• Simplify the integration of plans across system platforms 
• Make real-time plans easier to edit 
 
The following section outlines a sub-set of the solutions 
the team produced. Associated with each solution are lists 
of design criteria. Please note: not all design criteria shared 
are technically oriented. This is intentional, as the Design 
Ethnography methodology used for this research focused 
on first understanding human behavior and then asking the 
question of how technology could address the challenges 
discovered. 
  
Design criteria for each solution is categorized into the 
following sub-categories: 
• “Must Have” design criteria: refers to conditions that 



must be integrated into or considered in the development 
of the systems or tools to ensure its acceptance and use  



• “Nice to Have” design criteria: attributes that should be 
considered, but are not essential to be addressed in the 
first version of the system’s development 



• “Must NOT Have” design criteria: Cautions developers 
to conditions that must be avoided to ensure adoption of 
the tool. 











Provide a Consistent Data Set for Multiple 
Planning Tools 
Currently, ISS Planners are challenged by limited 
integration between tools that support planning activities. 
Politics, both within NASA and across International 
borders, hinder the development of one single planning 
system to support the entire ISS planning activity. 
Therefore, this concept attempts to support the creation of 
a technology that enables the seamless interchange of data. 
 
One way to do this is to build a central database for storing 
and accessing common planning data (i.e. activity 
templates, ISS power resource schedules). This allows 
multiple groups to access common data to use in their own 
systems, lessening the need for integration tools or a 
common planning system. Any changes made to the data in 
the database would then be changed in each system. 
 
“Must Have” design criteria 
• All tools using the consistent data set must be inter-



operable 
• Configuration management must be included in the 



database to ensure that simultaneous edits cannot be 
made to the same activity 



• The development group of the central database needs to 
be in the same mail code as the users to ensure that the 
technology continues to mirror its users’ requests, both 
in its initial implementation and evolving states 



 
“Nice to Have” design criteria 
• All users simultaneously modifying the same plan 



should be able to see each other’s modifications to their 
individual plans and the current working plan  



• All planning tools would operate on the same platform 
and desktop, possibly under one login 



 
“Must NOT Have” design criteria 
• Tools accessing the central database must not get 



overloaded and break  
• Tools accessing the central database must work 



efficiently, not being bogged down by data or loosing 
data 



Incorporate Globalization (localization and 
internationalization) Standards Into OSTPV 
All members of the ISS planning and mission operations 
teams must use and reference the OSTPV planning system 
for real-time operations. At the moment this system is only 
programmed in English which is the official language of 
the ISS. However, decision-making processes of the IPs 
are often delayed as they are continually translating 
interfaces and documents into their native languages to 
make the most informed decisions, and this takes time. 
 



Resource and system limitations have not allowed JSC to 
fully explore the possibilities for globalizing OSTPV as it 
would involve translating user interfaces from one 
language to another. This is a difficult problem to tackle as 
the OSTPV system infrastructure was not originally 
designed with this intent in mind. 
 
“Must Have” design criteria 
• A development team in charge of globalizing OSTPV 



must understand multiple foreign languages and cultures 
and have a technical background 



• Knowledgeable resources must be readily available to 
make message updates as system interfaces are changed. 
For instance, once internationalized, any change to one 
message/field within OSTPV will make system-wide 
changes to all messages/fields. Someone needs to be 
available to check the validity and understandability of 
messages across the system 



• The JSC planning team must retain ownership of the 
OSTPV system 



 
“Must NOT Have” design criteria 
• The globalization of OSTPV must not slow down the 



overall ISS planning process and the systems used within 
it 



• The globalization of OSTPV must not hinder cross-
partner communication and collaboration  



Build Versioning Management Capabilities Into 
the Planning Process 
Currently the ISS planning systems, CPS and OSTPV, 
have no versioning capabilities. This means every plan 
they create, and every activity embedded into that plan, 
must originate from scratch. In the past, the JSC ISS 
planning team created a separate database of standard 
planning activities in hopes of streamlining the plan 
generation process. However, with the scarcity of time for 
regular database maintenance, it became difficult to tell 
where activities originated and which ones were 
derivatives of others. For this reason, it often takes longer 
to find the version of the activity the planner wants than it 
does to generate the activity from scratch each time. 
 
A versioning management capability built into the ISS 
planning process would positively assist the plan 
generation activity, as it would trace the life cycle of an 
ISS activity. A planner would be able to trust that an 
activity within the database was the most up to date, which 
would decrease the decision-making process of which 
activity to use. Additionally, a versioning management 
capability would make each of the experts providing input 
into the plan accountable for their work as it would track 
when each of the activities was changed and by whom. 
This would enable the planners to have fewer, more 
productive reviews.  











 
“Must Have” design criteria 
• Changes between activities must be explicit and readily 



available 
• All changes made to an activity must coalesce back to 



the master activity 
• All activities within the database must be searchable by 



more than text alone; thereby enabling a planner to 
immediately reference all related activities 
simultaneously 



• Versioning management must be compatible, and ideally 
integrated, with at least one of the existing planning 
platforms–CPS and/or OSTPV 



• The data entry for establishing activities must be flexible 
to accommodate crunched deadlines. For example, it 
would be highly undesirable if there were twenty 
separate data fields and all were required for 
advancement in the system 



 
“Nice to Have” design criteria 
• Versioning management should support real-time 



scenario planning to assist with rapid re-plans 
• Versioning management should also automate some of 



the creation steps associated with PPCRs in real-time 
operations as the plan evolves 



• The JSC planning team must retain ownership of the 
OSTPV system 



 
“Must NOT Have” design criteria 
• The introduction of versioning management must not 



slow down the overall planning process (machine or 
planner-wise) 



• The accountability aspects of the versioning 
management must not allow “finger pointing” or laying 
blame on the experts and specialists using it. The focus, 
instead, needs to be on improving the overall integrity of 
planning activities 



Where Things Stand Today at JSC 
Solutions presented in this paper are initial proposals for 
the ISS planning team to address the challenges that they 
experience with respect to efficient product generation. 
JSC is beginning to work with tool developers from other 
Centers and IPs to create a more cohesive process. They 
are also working on multiple software projects to create 
better constraint planning and management tools, system 
optimization, and merging functionality of the CPS and 
OSTPV systems. Next steps for JSC involve sourcing the 
best technology to address the design criteria that resulted 
from the user research. 
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Abstract



Experience has shown that a major obstacle towards real au-
tonomy of mobile robots is the occurrence of unexpected
faults at runtime. While past research has mainly focused
on the hardware, we have developed methods for the local-
ization and repair of faulty software components at runtime.
However, as it is often not possible to autonomously repair
failed components, the deliberative layer of the control sys-
tem should be aware of the lost capabilities of the system and
adapt its decision-making. In this paper we present an AI-
planning system for an autonomous soccer robot. We model
the abstract capabilities of the control system, and we show
how the planning system infers the available capabilities from
the results obtained by the runtime diagnosis. We augment
action preconditions with capability requirements, and we
propose a method which allows to dynamically determine the
sensing capabilities required for monitoring of plans.



Introduction
Enabling intelligent mobile systems to act autonomously in
unknown and uncertain environments requires not only sens-
ing and planning abilities, but also the awareness of the sys-
tem’s capabilities. The system capabilities may degrade dur-
ing a mission due to the failure of hardware or software com-
ponents. Hardware may suffer damages from unexpected
interactions with a rough environment, or it may fail due to
internal faults. Software failures are caused by bugs.



Hence, a crucial step towards real autonomy is the de-
velopment of runtime diagnosis and repair/reconfiguration
techniques. While past research has mainly focused on hard-
ware aspects, in particular the diagnosis of sensor and actu-
ator failures in mobile autonomous robots, we have tackled
the issue of diagnosing software failures at runtime (Peis-
chl, Weber, & Wotawa 2006; Weber & Wotawa 2007). We
assume that the control system is decomposed into indepen-
dent components (modules), which fail independently and
which can be (re-)started separately. Components which
have failed, e.g. due to a crash or a deadlock, are restarted in
the hope that they work correctly afterwards. However, since
a real repair of software is not possible at runtime, it often
happens that components fail permanently, which leads to a
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persistent degradation of the capabilities of the control sys-
tem.



It is highly desirable that an autonomous system has a cer-
tain degree of robustness against the loss of hardware and
software capabilities. Obviously, this includes that the de-
liberative layer of the control system should be able to adapt
its decision-making. It must be aware of the remaining ca-
pabilities, and it must be able to determine which actions
and plans can still be executed. While some hardware and
software components are vital, i.e., their failure prevents the
system from doing anything meaningful, other components
are only required for specific actions. For example, when a
soccer robot loses the capability to kick the ball, it is still
able to interfere with an opponent robot by blocking the line
between the own goal and the opponent.



In this paper we describe how an AI-planning system can
be enhanced with the ability to adapt its decision-making
to degraded software capabilities. We integrate the output
from a runtime diagnosis and repair engine into a planning
system which is responsible for the closed-loop control of
an autonomous soccer robot. The planning system uses a
representation language similar to STRIPS (Fikes & Nils-
son 1972). Relying on diagnostic data indicating which
components are available and work correctly, it utilizes a
model of abstract capabilities of the control system to infer
the remaining capabilities. Furthermore, we augment action
preconditions with capability requirements. This allows the
planning system to determine which actions can be safely
executed wrt the remaining capabilities. Finally, we discuss
the issue that the monitoring and execution of plans require
certain sensing capabilities, and we propose an extension
to the PLANEX (Fikes, Hart, & Nilsson 1972) monitoring
technique which enables the executor to dynamically detect
whether or not the required sensing capabilities are avail-
able.



The integration of diagnosis results in the deliberative
layer of mobile autonomous systems has gained little at-
tention in past research. In particular, we are not aware
of any previous work which addresses AI-planning with de-
graded capabilities of the control system. Even though we
use robotic soccer as example domain, the proposed con-
cepts are general and thus can be applied in other contexts
as well. Furthermore, as we will discuss in the last section,
our work can also be extended to hardware failures.











Background: Runtime Diagnosis and Repair
in the SW System of an Autonomous Robot



Figure 1 depicts the most important software components of
the control system for our autonomous soccer robot. This
system is an example of a hybrid architecture which com-
bines the advantages of goal-directed reasoning with the re-
activity of the Sense-Act control paradigm.



The components Vision, Odometry, Sonar, and Kicker
process sensor data. The results of the former two are fused
by SensorFusion into a continuous world model, contain-
ing, among others, the estimated positions of environment
objects. Sonar supplies data which allows for the detection
of obstacles, and Kicker, relying on an infrared sensor in the
kicking device, states whether or not the robot possesses the
ball (this holds when the ball is between the grabbers s.t. the
robot can kick it). In addition, Kicker may receive a ”kick
now” command from BehaviorEngine, which causes Kicker
to simply pass the command to the kicking device.



Behavior
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Figure 1: Part of the control system of an autonomous soccer
robot. Connections depict data flows between components.



Planner is an AI-planning system representing the de-
liberative layer of the system. The output of the the plan-
ning system are high-level actions which are executed by
BehaviorEngine. The latter, following the paradigm of
(Brooks 1986), executes high-level actions by decompos-
ing them into reactive low-level behaviors. Finally, Mo-
tion transforms drive-independent commands into low-level
commands which are sent to the drive.



The components of our system are independent services
which employ CORBA communication mechanisms for ex-
changing data. One advantages of this architectural design is
the fact that software failures, e.g. crashes or deadlocks, are
confined to single components. Therefore, we seek to de-
tect failures at runtime and to locate the failed components
in order to ”repair” them (see below).



In (Peischl, Weber, & Wotawa 2006; Weber & Wotawa
2007) we propose a model-based approach to the runtime
diagnosis in a robot control system. We assign properties to
components and their connections which capture invariants
of the system behavior. E.g., a property could express that
a service must spawn a certain (minimum) number of pro-
cesses (threads), or that every n milliseconds there must be a
new event (carrying data) on a certain connection. The prop-
erties are monitored at runtime. When faulty behavior is de-
tected, i.e., one or more property violations occur, then the



failed component(s) can be located by employing the sys-
tem model which, in our case, represents the dependencies
between the properties.



The output of the fault localization algorithm is a set of
minimal diagnoses (de Kleer, Mackworth, & Reiter 1992).
Intuitively, a minimal diagnosis is a subset-minimal set
of components which can be reasonably assumed to have
failed. E.g., the diagnostic process could return the set
{{WorldModel}, {V ision,Odometry}}, indicating that
either WorldModel or both Vision and Odometry have failed.
The latter is a multiple fault, which often occurs in prac-
tice when a component fails in dependence of another failed
component.



Our runtime diagnosis approach mainly aims at severe
faults like crashes or deadlocks. The authors of (Steinbauer
& Wotawa 2005) propose to ”repair” failed software com-
ponents by simply restarting them. Although this is not a
real repair, practice has shown that it is often the case that
the faulty components work correctly after a restart. If there
are multiple diagnoses, then we consider all components in
the diagnoses as failed. All components which are assumed
as failed are immediately aborted and restarted afterwards.
After the detection of a fault, the robot is switched to a safe
standby mode, i.e., it is idle. It remains in this state until the
repair process terminates. Note that the robot may be able to
operate during the repair; this issue is discussed at the end
of this paper.



However, a restart may not succeed due to the internal
fault, or a component may fail multiple times within a short
period of time. In these cases, the component is removed
forever, and so the capabilities of the system are perma-
nently degraded. The goal of our work is to enable the plan-
ning system to determine the remaining capabilities and to
create plans which can be executed in spite of the lacking
capabilities.



AI-Planning in a Mobile Autonomous Robot
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Figure 2: Architecture of the planning system. Arrows rep-
resent data flows.



Figure 2 depicts an overview of our planning system.
The inputs to the planning system, e.g., the continuous











world states generated by component SensorFusion, are ab-
stracted, and the results are stored as atomic sentences in the
Qualitative World State (QWS). Formally, QWS is a con-
junction of atoms. The closed-world assumption holds, and
so each atom is either true or false. Table 1 introduces some
symbols which we use in the example domain.



Fact Is true iff.:
inReach(Ball) the ball is close, e.g. within 1m
closer(Ball) this robot is closer to the ball than



the opponent robot
isAt(Ball, OppGl) the ball is in the opponent’s goal
blocking(Ball, the robot blocks line between



OwnGl) the ball and the own goal
possBall the robot possesses the ball
inKickPos(OppGl) the robot’s position and orientation



is opportune for a kick to OppGl
perc(Ball) the robot’s vision perceives the ball



Table 1: Symbols used for the qualitative world model



perc(o) is particularly important as a mobile robot’s vi-
sion is imperfect. When the robot cannot perceive o for some
reason, the truth value of atoms like inReach(o) is spurious,
but perc(o) is false. Hence, wherever such an atom occurs,
perc(o) should be used in the same context in order to en-
sure that the value of, e.g., inReach(o) is valid. By contrast,
the evaluation of the predicate possBall relies on data from
an infrared sensor which is processed by component Kicker.
This data is usually reliable.



The task of the strategy module is, relying on the pre-
defined strategic knowledge, to select a goal which can be
passed to the planning algorithm. The strategic knowledge is
a sequence 〈Γ1, . . . , Γn〉 of goal specifications, where each
goal specification Γi is a tuple (pre, inv, g). The goal pre-
condition pre is a (first-order) sentence which must be true
before this goal can be selected, g is the STRIPS goal con-
dition, and inv is the goal invariant. The latter is relevant
only during the execution of a plan: when the invariant of
the current goal is violated, then the ongoing plan which is
supposed to achieve the goal is aborted, and a new goal is
selected.



The goal selection process is simple: the strategy mod-
ule selects a goal specification Γi s.t. pre(Γi) is satisfied in
QWS, but QWS does not entail g(Γi). If there are two goal
specifications Γi and Γj , i < j, which could be selected,
then Γi is preferred. If no goal can be selected, then the
planning system outputs an Idle action. Notice that it may
also happen that Γi is selected but the planning algorithm
cannot find a plan which achieves g(Γi). In this case, the
strategy module tries to select another goal.



Table 2 depicts a simple strategy: either the robot aims to
score a goal (g0), or it moves to a position between the ball
and the own goal in order to ”defend” the own goal (g1).



The planning module contains a Graphplan implementa-
tion (Blum & Furst 1997). Based on the QWS as initial
state and the selected goal, the planning algorithm com-
putes a parallel plan which is subsequently linearized by ran-
domly establishing order relations between parallel actions.



goal: precondition: goal condition:
g0 closer(Ball) isAt(Ball, OppGl)
g1 ¬closer(Ball) blocking(Ball, OppGl)



Table 2: Simple strategy for a soccer robot. The goal invari-
ants are equal to the goal preconditions.



At present, our planning system is not able to execute paral-
lel plans, but the BehaviorEngine can execute behaviors in
parallel. E.g., the action Score corresponds to several con-
current low-level behaviors: for dribbling, for kicking at the
”right” moment, for obstacle avoidance, etc.



Figure 3 introduces some action schemas for our domain.
It can be seen that we use very coarse-grained actions. This
has several reasons. First, we want the computed plans to be
short in order to ensure quick (re-)planning in this highly dy-
namic domain. Second, the execution details are better left
to reactive behaviors. Third, coarse-grained plans are more
robust against environment changes than finer-grained ones,
and so fewer plan abortions and subsequent re-planning ac-
tivities are necessary.



Block(obj1, obj2):
pre: perc(obj1)∧ perc(obj2)
eff: blocking(obj1, obj2)∧¬possBall



Goto(obj):
pre: perc(obj)
eff: inReach(obj)∧¬possBall



GrabBall:
pre: ¬possBall∧ perc(Ball)∧ inReach(Ball)
eff: possBall



Dribble(obj):
pre: possBall∧ perc(obj)
eff: inKickPos(obj)



Score(obj):
pre: possBall∧ perc(obj)∧ inKickPos(obj)
eff: ¬possBall∧ isAt(Ball, obj)



Figure 3: STRIPS-like action schemas



E.g., a valid plan for achieving the goal g0 (Tbl. 2)
could be 〈Goto(Ball), GrabBall, Dribble(OppGl),
Score(OppGl)〉. Notice the usage of perc(obj) in the ac-
tion preconditions. It ensures that an action is only executed
when the environment object(s), which the action relates to,
are currently perceived by the vision system. Moreover, note
the ¬possBall facts in the effects of Block and Goto: these
actions will lose the ball, even if the robot possesses the ball
before.



The plan executor is responsible for executing those ac-
tions which are necessary for achieving the goal, for re-
executing parts of the plan which have failed to achieve
the desired result, and for aborting plans. When a plan is
aborted, we do not attempt to perform any kind of ”plan re-
pair”, because the plans in our domain are usually small;
instead, our planning system discards the plan, selects a new
goal, and invokes the planning algorithm. Apart from this,
our plan execution is similar to PLANEX (Fikes, Hart, &
Nilsson 1972). Remember that also a violation of the goal
invariant leads to the abortion of a plan (see above).











Adding Capability Requirements to Actions
As already explained, the control system capabilities are
permanently degraded when one or more SW components
could not be restarted after failures or when components
have failed multiple times within short periods of time and
thus were removed from the system. Nevertheless, the robot
may be able to perform certain actions which do not depend
on the lost capabilities. In order to allow for the creation and
execution of meaningful plans, the planning system needs to
know which components are available and work correctly.
Hence, the diagnosis/repair engine notifies the planning sys-
tem about the states of all components, and these informa-
tions are encoded using the ok predicate: for the point of
view of the planning system, each component c is either
available and works correctly, i.e., ok(c) holds, or the com-
ponent is unavailable (¬ok(c) holds).



In order to determine which actions are executable we
model the abstract capabilities of the control system. As
we shall see later, this allows us to add capability require-
ments to action preconditions. For inferring the available ca-
pabilities at runtime, we employ a capability graph, which
is depicted in Fig. 4. Note that, for brevity, we introduce
a component WorldModel which subsumes the components
Vision, Odometry, and SensorFusion in Fig. 1, and Behav-
iorExec subsumes BehaviorEngine and Motion.



WorldModel Sonar Kicker BehaviorExec



WorldState ObstData CmdMot CmdKick BallDet AccKickDev



CtlMot



CtlMotOA



Kick



Figure 4: A capability graph. Rectangles are components,
solid rounded rectangles are acting capabilities, and dotted
rounded rectangles are sensing capabilities.



The capability graph is a directed acyclic graph (DAG).
The sources (nodes without incoming edges) are the com-
ponents. Each component provides one or more basic ca-
pabilities. E.g., Sonar provides ObstData (obstacle data),
BehaviorExec can command motions and kicks, and Kicker
provides the ball detection capability and it also accesses the
kicking device. We distinguish between sensing and acting
capabilities.



Basic capabilities, which are provided by single compo-
nents, can be combined to derive higher-level capabilities.
E.g., the capabilities WorldState and CmdMot are com-
bined to CtlMot: in order to control a motion (in the sense
of control theory), the system needs not only to be able to
command motions, but also to receive sensor feedback indi-
cating how the world changes. Moreover, if the system also
has obstacle data, then the motion control is augmented with



a reactive obstacle avoidance (capability CtlMotOA).
The semantics of the cabability graph can be captured by



a set of logical sentences. We use the predicate has for sens-
ing capabilities and can for acting capabilites:



ok(WorldModel) ⇔ has(WorldState)
ok(BehaviorExec) ⇔ can(CmdMot)
ok(BehaviorExec) ⇔ can(CmdKick)
has(WorldState)∧ can(CmdMot) ⇔ can(CtlMot)
· · ·
These sentences are added to the knowledge base in the



form of rules. We employ a simple forward-chaining algo-
rithm which, starting with the given ok(c)/¬ok(c) facts, in-
fers the capabilities.



We use the capability predicates in action preconditions
in order to state those capabilities required for the execu-
tion of the action by the control system. More precisely, the
precondition of a high-level action should include the act-
ing capabilities as well as the sensing capabilities required
by those low-level behaviors which correspond to this ac-
tion. E.g., the action GrabBall moves to the ball s.t. the ball
is between the grabbers of the robot. The acting capability
required by the low-level behaviors is CtlMotOA, the re-
quired sensing capability is WorldState. In this example,
the latter is redundant since has(WorldState) always holds
when can(CtlMotOA) is true.



The augmented action definitions are given in Fig. 5.
For the sake of conceptual clarity, we split the precondi-
tion pre(A) of an action A into two parts: pre(A) =
preE(A)∧ preC(A), where preE(A) is the environment
precondition and preC(A) the capability precondition. The
environment preconditions in Fig. 5 conform to the precon-
ditions in Fig. 3. Furthermore, notice that all of actions in
Fig. 5 require an obstacle avoidance in order to avoid physi-
cal damage caused by collisions.



Block(obj1, obj2):
preE : perc(obj1)∧ perc(obj2)
preC : can(CtlMotOA) [∧has(WorldState)]
eff: blocking(obj1, obj2)∧¬possBall



Goto(obj):
preE : perc(obj)
preC : can(CtlMotOA) [∧has(WorldState)]
eff: inReach(obj)∧¬possBall



GrabBall:
preE : ¬possBall∧ perc(Ball)∧ inReach(Ball)
preC : can(CtlMotOA) [∧has(WorldState)]
eff: possBall



Dribble(obj):
preE : possBall∧ perc(obj)
preC : can(CtlMotOA) [∧has(WorldState)]
eff: inKickPos(obj)



Score(obj):
preE : possBall∧ perc(obj)∧ inKickPos(obj)
preC : can(CtlMotOA)∧ can(Kick) [∧has(WorldState)]
eff: ¬possBall∧ isAt(Ball, obj)



Figure 5: Action schemas with environment and capability
preconditions (preE and preC , resp.). Redundant capabil-
ity atoms are enclosed by brackets [].











For example, suppose the component Kicker has failed.
Then the goal g0 in Tbl. 2 can no longer be achieved, as the
action Score(OppGl) requires can(Kick). However, for g1



the plan 〈Block(Ball, OwnGl)〉 is valid, since this action
does not depend on any capability provided by Kicker.



These action definitions also illustrate why we have cho-
sen to model capabilities rather than simply enumerating the
required components in action preconditions. First, enu-
merating all required components would be tedious and
error-prone in systems with a large number of components.
Second, finding the capability requirements of actions is
more intuitive since capabilities capture higher-level con-
cepts. Third, the action definitions are easier to maintain
when the design of the control system changes, because the
system capabilities may be unaffected by modifications in
the component structure.



Finding Actions and Goals with Lower
Capability Requirements



So far, in order to enable our system to make rational de-
cisions after software failures, we have added capability re-
quirements to existing actions. This guarantees that gener-
ated plans only contain acions which can actually be exe-
cuted by the control system. However, in practice it is often
desirable to add new actions which require fewer capabili-
ties but which achieve the same (or at least similar) effects
as already existing actions, albeit with lower efficiency. For
example, suppose the Sonar component fails. Then the sys-
tem lacks the capability CtlMotOA which is contained in
all preconditions in Fig. 5. Hence, we add similar actions
which, however, do not rely on an obstacle avoidance. These
actions are performed at a lower motion speed and thus are
less likely to cause physical damage in case of a collision,
e.g.:
Goto slow(obj):
preE : perc(obj)
preC : can(CtlMot)∧¬can(CtlMotOA)
eff: inReach(obj)∧¬possBall



Note that ¬can(CtlMotOA) ensures that slow ac-
tions are selected only if there is no obstacle avoidance.
The effect remains unchanged. Hence, after a failure
of Sonar the plan 〈Goto slow(Ball), GrabBall slow,
Dribble slow(OppGl), Score slow(OppGl)〉 could be
computed for goal g0 in Tbl. 2. Obviously, this plan is less
likely to succeed: e.g., it may happen now that the opponent
robot approaches the ball faster than this robot is able to. In
this case, the goal invariant closer(Ball) of g0 may be vio-
lated, leading to an abortion of the plan. Afterwards the goal
g1 would be selected.



Furthermore, suppose the component Kicker fails. If
¬closer(Ball) holds in the current world state, then the goal
g1 is selected, and the plan 〈Block(Ball, OwnGl)〉 is com-
puted. However, if closer(Ball) holds, then no plan can be
found which achieves g0, and the robot becomes idle. This
example shows that we should also seek to provide addi-
tional goal specifications having lower capability demands
and thus allowing the robot to do something meaningful in
spite of software failures. In this example, by removing the



precondition of goal g1 in Tbl. 2, we could accomplish that
g1 is also selected if closer(Ball) holds but no plan can be
found for g0 due to a lack of capabilities.



Capabilities Required for Plan Monitoring
If the capability precondition of an action is fulfilled, then
the control system has the capabilities to execute the low-
level behaviors which correspond to this action. Unfortu-
nately, even if the capability preconditions of all actions in
a plan are true, this does not necessarily imply that this plan
can also be monitored by the plan executor. Suppose, for
example, a plan which contains the action GrabBall. The
reactive behaviors which implement this action can be ex-
ecuted if preC(GrabBall) = can(CtlMotOA) holds; the
capability BallDet is not required. However, the plan ex-
ecutor needs this capability for the monitoring of this action:
the effect of GrabBall is possBall, and the truth value of
this fact is only valid if the ball detection works, otherwise it
is spurious (remember that, due to the closed-world assump-
tion, each atom is either true of false).



A crucial point is the observation that the evaluation (of
the truth value) of each predicate p requires certain sens-
ing capabilities. Hence, we introduce a function π(p) which
returns the set of sensing capabilities needed for the eval-
uation of p. E.g., π(possBall) = {BallDet}, whereas
π(p) = {WorldState} for all other predicates in Tbl. 1.
For predicates which do not depend on sensor perceptions,
π would return an empty set. Furthermore, for any first-
order sentence ϕ, let P(ϕ) denote the set of all predicates
occurring in ϕ, and we define:



Π(ϕ) =
∧



p∈P(ϕ)



[∧
γ∈π(p) has(γ)



]



I.e., Π(ϕ) is a conjunction of has-atoms indicating all
sensing capabilities required for the evaluation of the predi-
cates in ϕ. A quick solution to the problem explained above
could be to add all those sensing capabilities to the precon-
dition of an action A which are required for the evaluation
of the predicates occurring in the precondition and the ef-
fect of A. I.e., we could define a monitoring precondition
preM (A), which is part of pre(A):



pre(A) = preE(A)∧ preC(A)∧ preM (A)



with



preM (A) = Π
(
preE(A)



) ∧ Π
(
eff(A)



)



As all actions in Fig. 5 contain the predicate possBall in
the environment precondition or the effect, has(BallDet)
would be included in all monitoring preconditions (in addi-
tion to has(WorldState)). This solution would guarantee
that actions are only executed if all sensing capabilities re-
quired for the evaluation of the predicates in the precondition
and the effect are available. However, it can be easily seen
that this method is too restrictive. Suppose the component
Kicker has failed and, for some reason, we simply want the
robot to be at a certain position X . The goal inReach(X)
could not be achieved, because preM (Goto) would contain
has(BallDet), as ¬possBall is an effect of Goto. Obvi-
ously, this is an undesired result, as Goto(X) does certainly











not require a ball detection for achieving inReach(X), and
the action effect ¬possBall is irrelevant in this context.



One could try to resolve this issue by defining ¬possBall
as a side-effect of Goto, meaning that this part of the ef-
fect is not relevant and thus does not need to be monitored.
However, it may well be the case that a subsequent action
in a plan requires that ¬possBall holds. The relevance of
the effect ¬possBall depends on the context, i.e., on the
plan which contains Goto and on the goal to achieve. No-
tice that side-effects have been used before in AI-planning,
but mainly for reducing the search costs; e.g., see (Fink &
Yang 1993) and the references therein.



We propose to use the plan executor to determine the sens-
ing capabilities required for the monitoring of a plan. Our
approach is based on kernel models, which were introduced
for the monitoring of STRIPS plans (Fikes, Hart, & Nils-
son 1972). Many real-world planning systems still use plan
execution methods similar to this one. In the following we
provide a brief introduction to kernels.



Kernel / Action: Π(Ki):
K1 perc(obj)∧ can(CtlMotOA) has(WorldState)
A1 Goto(X)
K2 inReach(X) has(WorldState)



Table 3: Kernels for the plan 〈Goto(X)〉 and the goal
inReach(X).



From a STRIPS plan, a kernel can be extracted for before
and after each action. For a plan 〈A1, . . . ,An〉, the corre-
sponding kernels are K1, . . . ,Kn+1. Table 3 and 4 depict
the kernels for two example plans. A kernel Ki is a con-
junction of literals, and it has the property that, if Ki holds
in the current world state, then the actions Ai, . . . ,An can
be executed and they will achieve the goal, provided that
the executions lead to the desired results as indicated in the
action effects. Kn+1 is the STRIPS goal condition. For
1 ≤ i ≤ n, Ki consists of those literals contained in the
precondition of Ai plus those literals in Ki+1 which are not
part of the effect of Ai.



At each execution step, the plan executor performs a
backwards search through the kernels (i.e., in the order
Kn+1, . . . , K1) and checks for each kernel Ki if it is sat-
isfied in the current world state. When such a kernel Ki is
found, then the action Ai is executed. If no kernel is satis-
fied, then replanning is necessary. A plan is finished when
Kn+1 is true in the current world state.



For a kernel Ki, Π(Ki) states the sensing capabilities re-
quired for evaluating the truth value of the facts in Ki. It
can be seen that the kernels in Tbl. 3 do not include the atom
possBall, i.e., it is irrelevant for the monitoring of this plan,
even though the effect of Goto contains ¬possBall. Conse-
quently, this plan can be executed (and monitored) in spite of
a failure of component Kicker. By contrast, several kernels
in Tbl. 4 require has(BallDet) for their evaluation.



We propose to adapt the execution policy, which we have
outlined above, as follows. Before checking if a kernel Ki is
satisfied in the current world state, the plan executor checks
if Π(Ki) holds. If not, then we know that Ki contains facts



whose truth value is spurious. Hence, if the plan execution
would be continued, then it might happen, e.g., that actions
would be started whose precondition do not hold in the real
environment, or that the execution of an action continous
forever, although its effect has already been achieved in the
real world. Therefore, the plan executor should abort the
plan, and either another goal should be selected or an alter-
native plan be computed.



Discussion and Related Research
A general problem is the fact that most components of real
control systems are vital, i.e., the robot cannot pursue any
task when one of these components fail. For example, only
two components in Fig. 1 are non-vital, namely Kicker and
Sonar. This issue can only be resolved by decomposing
control systems into a larger number of independent com-
ponents. E.g., if there is a fault in BehaviorEngine, then
the robot’s motion cannot be controlled anymore. However,
if each reactive behavior is represented by a separate com-
ponent, then some of these components are not vital: a be-
havior BEH KICK, for example, would not be required for
actions like Goto.



An interesting question is how our approach could be ex-
tended to hardware failures. The qualitative modelling of
hardware capabilities is more difficult. Regarding software
systems, the planning system only needs to know which
components are available (and working correctly) in order to
infer the capabilities of the SW system. By contrast, hard-
ware components may degrade gradually. E.g., the precision
of sensors may decline, or the driving unit is no longer able
to perform specific movements after the breakdown of a sin-
gle wheel (Hofbaur et al. 2007).



Hence, a hardware diagnosis (and reconfiguration) engine
would need to provide more specific informations to the
planning system. E.g., a vision diagnoser could directly sup-
ply facts like has(precision high), has(precision low),
etc., which can be utilized in capability preconditions of ac-
tions: preC(GrabBall) = has(precision high)∧ . . . and
preC(Block) = has(precision medium)∧ . . . (grabbing
a small object like a ball requires high sensing precision).



Another issue is that the robot could continue to pursue
tasks while failed software components are restarted. This
is particularly important as restarts may take a long time.
Although our current approach enables the planning sys-
tem to create and execute plans during repair, it would be
advantageous to employ partial-order plans which integrate
abstract repair actions. For example, suppose the compo-
nent Kicker has failed. In our current approach, at the begin-
ning of the repair process no plan could be computed for the
goal isAt(Ball, OppGl). We would prefer that a plan as de-
picted in Fig. 6 is found. Relying on this plan, Kicker may
be repaired concurrently to the action Goto(Ball). When
the repair is finished, the remaining actions can be executed.



For generating partial-order plans one can use, e.g., the
UCPOP planner (Weld 1994). It should be noted that two
actions which are unordered relative to one another in a
partial-order plan can not always be executed in parallel,
see (Knoblock 1994). Moreover, although the Graphplan











Kernel / Action: Π(Ki):
K1 perc(OppGl)∧ perc(Ball)∧ can(CtlMotOA)∧ can(Kick) has(WS)
A1 Goto(Ball)
K2 perc(OppGl)∧¬possBall∧ perc(Ball)∧ InReach(Ball)∧ can(CtlMotOA)∧ can(Kick) has(WS)∧has(BallDet)
A2 GrabBall
K3 possBall∧ perc(OppGl)∧ can(CtlMotOA)∧ can(Kick) has(WS)∧has(BallDet)
A3 Dribble(OppGl)
K4 possBall∧ perc(OppGl)∧ inKickPos(OppGl)∧ can(CtlMotOA)∧ can(Kick) has(WS)∧has(BallDet)
A4 Score(OppGl)
K5 IsAt(Ball, OppGl) has(WS)



Table 4: Kernels for a plan with four actions and the goal IsAt(Ball, OppGl). WS abbreviates WorldState.



Goto(Ball) GrabBall Dribble(OppGl) Score(OppGl)



Repair(Kicker)



Figure 6: Partial-order plan containing a repair action.



algorithm produces parallel plans, it is unclear if Graph-
plan is appropriate for our purpose, because its plans are
often too restrictive wrt execution flexibility, i.e., it imposes
too many precedence relations between actions (Nguyen &
Kambhampati 2001).



So far, the issue of integrating the results obtained by run-
time diagnosis in AI-planning systems of autonomous sys-
tems has gained little attention among researchers. The Re-
mote Agent architecture (Williams, Nayak, & Muscettola
1998) employs model-based diagnosis methods for the de-
tection and localization of hardware failures. If such a fail-
ure cannot be handled locally, the degraded capabilities are
reported to the planning system and replanning is performed.
However, the authors do not explain this in detail; neither
the related modelling issues nor the importance of sensing
capabilities for plan monitoring are discussed.



The authors of (Micalizio, Torta, & Torasso 2004; Mical-
izio & Torasso 2007) use model-based diagnosis techniques
to monitor the execution of multi-agent plans by a team of
service robots. One aim of this work is to provide the global
planner/scheduler with the assessed status of robots and the
explanations of failures. However, a deeper discussion of
the planning and plan monitoring issues in this context is
not provided.



Model-based diagnosis techniques can also be employed
for the execution monitoring of plans, see, e.g., (Roos &
Witteveen 2005) and the references therein.



A related issue, which we have not addressed in our work,
is the repair of plans after software or hardware failures. For
example, (Gallien, Ingrand, & Lemai 2005) propose an ap-
proach to temporal planning and execution control which in-
cludes plan repair and replanning. The context of this work
are autonomous exploration missions.



We are not aware of any past research which has ad-
dressed the issue of AI-planning with degraded software ca-
pabilities in autonomous systems. We have presented an AI-
planning system for an autonomous soccer robot. This sys-
tem is able to adapt its decision-making after software faults



which are detected and located by a model-based diagno-
sis system. Relying on the output of the diagnostic process,
our planning system infers the available capabilities of the
control system. In order to achieve that plans contain only
actions which can also be executed by the (degraded) control
system, we augment action preconditions with capability re-
quirements. Furthermore, we show that also the monitoring
of plans requires certain sensing capabilities, and we pro-
pose an extension to the PLANEX plan execution technique
which allows the executor to detect whether or not the re-
quired sensing capabilities are available.
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Abstract
A chief hindrance to the practical value of AI scheduling and
planning tools stems from the difficulty in adequately encod-
ing domain knowledge. Using imperfect domain knowledge,
fully automated systems that abstract away the ‘scruffy’ real
world tend to produce fragile schedules that omit important
constraints and optimize artificial metrics. As a result, these
systems are ultimately often rejected by the user. We de-
scribe the design of a user-centric scheduling system, Pisces,
that assists the user in exploring the rich space of schedules
in complex, real-world domains with multifaceted objectives.
Pisces retains the strength of humans in understanding sched-
ule quality and nuances of domain constraints, while leverag-
ing the power and flexibility of constraint-based scheduling
algorithms. The system helps the user to iteratively craft a so-
lution by expressing both high-level guidance and low-level
specific constraints and preferences.



Introduction
Considerable progress has been made in the automation of
scheduling processes in domains from manufacturing to mil-
itary logistics [17; 2]. At the same time, sparse is the suc-
cessful adoption of AI scheduling and planning systems rel-
ative to the potential.



Smith et al. [12] identify three obstacles to a more
widespread and fruitful adoption: design from a technol-
ogist’s rather than a user’s viewpoint; poor integration be-
tween planning, scheduling, and execution; and limited sys-
tem configurability. Later, surveying the challenges address-
ing AI scheduling, Smith [13] again identifies one obstacle
as lacking in modelling and manipulation of complex con-
straints, objectives, and preferences — a lack of flexibility,
in both modelling and operation.



Presaged by Kramer and Smith [8], Isbell and Pierce [6]
characterize an Interface-Proactivity continuum that ranges
from zero to full automation: ‘Do It Yourself’, ‘Tells You
to Pay Attention’, ‘Tells You What to Pay Attention To’,
‘Makes Suggestions’, and ‘Makes Decisions’. The classi-
cal development of AI scheduling systems falls in the last
category of the continuum. The user states the goal and the
objective criteria, and the system generates the schedule; the
process is one of full automation.



Adequately encoding domain knowledge is a long-
standing difficulty in the development of AI systems, espe-
cially in complex, real-world domains. Since they operate



in a one-shot fashion based on inevitably incomplete infor-
mation, fully automated scheduling tools tend to produce
fragile schedules that omit important constraints and opti-
mize artificial metrics [13]. Consequently, for such domains,
these systems are ultimately often rejected by the user.



Our motivating domains feature large, complex, real-
world problems, such as the Air Mobility Command (AMC)
problem [10]. In AMC, sets of aeroplanes are grouped into
air wings. Each air wing has a resource profile that indicates
how many of its planes will be available over time. The
planes are used to carry out missions, defined by priority
levels, durations, deadlines, earliest start times, and resource
requirements. The scheduling task is to assign planes to mis-
sions, in order to schedule as many higher-priority missions
as possible without violating constraints.



To solve problems such as AMC efficiently, classical
AI scheduling abstracts away much of the ‘scruffy’ real
world. By contrast, humans excel at capturing and act-
ing on the soft constraints and complex, multifaceted ob-
jective functions. Our hypothesis is that, rather than com-
pletely automated attempts, problems in real-world domains
are better served by collaborative approaches that involve the
user in the scheduling process. Such systems, often called
mixed-initiative, represent a move away from one end of the
Interface-Proactivity continuum.



Hence, the philosophy of our approach is to make the user
central [3], viewing the process of defining and solving a
scheduling problem as collaboration between a human user
and one or more automated scheduling assistants. The AI
system should both involve (to the extent desired by the user)
and enable the user in the scheduling process. While embed-
ding fully automated scheduling algorithms, such a system
goes beyond a decision aid, working with and in service of
its user to jointly solve the scheduling problem.



This paper describes the design of a user-centric schedul-
ing system, Pisces, that assists the user in exploring the rich
space of schedules in complex, real-world domains with
multi-faceted objectives. The system is designed from a
user’s rather than a technologist’s viewpoint, with an em-
phasis on configurability. Pisces retains the strength of hu-
mans in understanding schedule quality and nuances of do-
main constraints, while leveraging the power and flexibility
of constraint-based scheduling algorithms. The system helps
the user to iteratively craft a solution by giving the ability to











express both high-level guidance and low-level specific con-
straints and preferences.



After briefly describing related scheduling systems, we
report our design criteria for Pisces, which focus on the user
experience and system configurability, rather than on the
underlying scheduling technology. Next, we describe the
Pisces system, its user interface, and its scheduling engine.
We present a use case highlighting the user-centric aspects
of the approach, which are designed to move us closer to
practical scheduling systems. We conclude with a discus-
sion of ongoing work.



Related Work
Despite the significant progress in AI scheduling and plan-
ning technology [17], the research energy given to devel-
oping user-centric systems and tools has been in the minor-
ity. Ferguson et al. [5] present an earlier effort to create an
AI system that acts as the user’s assistant, collaborating in
mixed-initiative user–system fashion.



Pisces shares a similar spirit with the OZONE scheduling
framework [12]. OZONE presents an object-oriented sys-
tem design based around a planning and scheduling ontol-
ogy and a library of problem-solving components. OZONE
adopts a constraint-based [2], iterative solution paradigm
where, by default, the user specifies constraints and the sys-
tem determines the consequences. Developing the concept
of a “continuum of automation” raised by Kramer and Smith
[8], Pisces emphasizes the user experience in exploring the
solution space, with a scheduling engine in continuous back-
ground operation; fundamental to the Pisces design is a set
of solutions that the user can explore.



A successor of OZONE is COMIREM [14], a lightweight,
interactive tool for resource management in continuous
planning domains. COMIREM emphasizes iterative deci-
sion making by the user at different abstraction levels, based
on multiple visualizations.



MAPGEN [1] is a mixed-initiative decision-support sys-
tem for Mars rover mission planning. Based around a plan-
ning and scheduling “toolbox” and an integrated, constraint-
based approach to combined planning and scheduling with
time and resources, MAPGEN was successfully deployed
within NASA. MAPGEN shares with OZONE a paradigm
of iterative solution development, based on limited changes
from an initial (system-proposed) schedule, albeit the form
of system–user operation is more limited.



The commonalities in the relative success of systems such
as these surveyed are instances supporting more general
findings. Reports on operationalized scheduling and plan-
ning tools emphasize the importance of domain modelling;
flexible levels of user–system decision making; user inter-
face; schedule visualization; and integration with existing
tools, data sources, and work practices [1; 11; 4; 15].



Design Criteria
Our motivating domains are large in scale, featuring more
resources and activities than a person can reason over effec-
tively, but also featuring knowledge and objectives too sub-
tle, life-critical, or context-dependent for a fully automated



scheduling system to produce credible solutions. Such do-
mains include the AMC problem introduced earlier, and
similar large-scale, complex logistics domains.



The features of our intended domains and the obstacles to
scheduler adoption articulated by Smith et al. [12] motivate
the following design criteria for Pisces.



User-centric Besides a source of domain expertise, the user
ultimately decides what is a ‘good’ solution; the system
assists by computing the implications of the user’s guid-
ance and managing the details of the schedule.



Solution visualization and search space exploration We
view scheduling not as the search for an optimal schedule
but as the process of the user–system pair exploring
the space of solutions. By necessity, solutions with
substantive numbers of resources and activities must be
displayed in such a way that the user can quickly gain a
sense of the solution’s strengths and weaknesses.



Incremental operation At any time, the user should have a
schedule to view and refine in iterative collaboration with
the system.



Multiple criteria The user must be able to state how dif-
ferent criteria trade off, see how a given solution rates on
each criterion and in combination, and compare solutions.



Mixed-initiative The system should enable the user to
manage the schedule exploration process at multiple lev-
els of abstraction. The user should be able to state guid-
ance in terms of high-level strategic objectives (e.g., value
robustness to resource failure over resource utilization)
and low-level preferences and constraints (e.g., make an
activity start as late as possible).



Oversubscribed problems The system should work
equally effectively when the resources are plentiful, or
insufficient, to satisfy all jobs or activities.



Scalability Because real-world problems can contain hun-
dreds or thousands of resources, the underlying schedul-
ing engine and visualizations should scale accordingly.



Changes to domain knowledge In many real-world situ-
ations, the problem is not completely specified before
scheduling begins. For instance, an added or removed re-
source should be quickly factored in, and previous solu-
tions revised accordingly.



The Pisces System
Three main components compose Pisces: the scheduling en-
gine, the user interface (UI), and the user. The UI should
be understood as being the conduit through which two au-
tonomous, cooperative agents — the engine and the user —
work on a common problem continuously and in parallel,
each reacting to the operations of the other.



The engine, once started, continuously searches the solu-
tion space for optimal schedules based on the current guid-
ance from the user. Whenever a solution is found, regardless
of its level of optimality, it is added to a solution database.
The engine listens for changes to the user’s guidance, the
resources available, and the activities to be scheduled.
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Figure 1: The Pisces UI gives the user the ability to specify guidance to the scheduling engine (left panes) and to view and
navigate a set of solutions (right panes).



The user, once the first solution is available, directs the
process of searching for and modifying solutions to the prob-
lem. For this purpose, the user can, at any time:



• Navigate through the set of solutions (e.g., to the ‘best’, to
a favorite, to a designated reference), and direct the engine
to operate from a selected solution



• Examine a solution at multiple levels of abstraction



• Annotate a solution (name it, mark it as ‘best’ or as poor,
save it as a favorite, select it for execution)



• Change the relative importance of high-level criteria (e.g.,
more important to be robust to resource failure than to
optimize resource usage)



• Add a low-level preference or constraint (e.g., drop us-
age a resource by 30% in a given time window, or force
inclusion of a particular activity)



• Initiate a specialized query to the engine (e.g., flatten re-
source usage)



The user guides the engine by specifying from which so-
lution to continue search (reference solution), in which di-
rection to search (objective function), and what aspects of
the solution may, may not, or must change (preferences and
constraints). Combined with the ongoing iterative solution
improvement process, the guidance allows the user to craft a
solution in a way not possible by simply stating the weights
of the objective function and invoking a fully automated
scheduling algorithm.



User Interface
Figure 1 shows the Pisces UI toward the beginning of the
collaborative solution-crafting process. It consists of three



main components: a menu bar (top), panes for manipulation
of user guidance (left), and panes for viewing and navigating
the set of solutions (right).



Solution exploration and navigation We start with the
solution navigation panes on the right, which consist of two
solution navigation toolbars, a solution-at-a-glance (SAG)
visualization, and a solution drill-down visualization. The
solution-at-a-glance view allows the user to form a high-
level assessment of a single solution, including whether
there are any resource constraint violations (in red, but not
shown), which resources are heavily used and at what times,
and where the interesting (e.g., problematic) parts of the
problem lie. For the AMC domain, each row in this pane
represents the resource usage over time for a wing of air-
craft. The color indicates the resource usage of the wing rel-
ative to the maximum available: grey indicates no usage, a
lighter blue indicates low usage, and a darker blue indicates
high usage. When usage exceeds the capacity of a resource,
it is shown in red; Pisces attempts to eliminate such capacity
constraint violations. In Figure 1, the user can tell that most
resources are heavily used early in the schedule and scantly
used in the later part. The user can therefore direct atten-
tion to the early part of the schedule; she might request, if
possible, that additional resources be allocated to this part.



The solution drill-down view beneath the SAG view con-
tains several panes organized in tabs. Each tab represents a
detailed view of the selected part of the SAG. The Overview
tab gives high-level statistics for the solution, including how
well the solution scores on each objective criterion. The Re-
source Profile tab shows the capacity used over time for the
selected resource in the SAG. In this tab, the user can add
preferences to reduce the usage of a resource by a given











amount. The Activity Profile tab shows the time assigned
to each activity and which activities overlap. In this tab, the
user can add constraints such as “force inclusion of this ac-
tivity”, “lock this resource to this activity”, and “lock this
activity to a given time”. The Unscheduled Activities tab
shows which activities are excluded from the current solu-
tion. In this tab, the user can force inclusion of an activ-
ity. The Map View tab is intended to give a geo-spatial vi-
sualization of the scheduled activities. The Source Query
tab contains a copy of the objective function that produced
the viewed solution, and allows the user to revert back to it.
Thus, the user can readily investigate the effects of varying
guidance to the scheduling engine.



The solution navigation toolbars allow the user to navi-
gate between different solutions and annotate them. The bot-
tom bar allows the user to name the current solution, mark it
as a favorite or as the ‘best’, mark it as the stability reference
(described below), or delete it. The user’s currently marked
‘best’ solution is the schedule that Pisces will pass on for
execution, if the user chooses. The top bar allows the user
to navigate the solution set, including browsing in the style
of web browser (the leftmost ‘Previous’ and ‘Next’ buttons),
and to ‘Jump to best solution’ (third button). A drop-down
box allows access to the set of favorite solutions.



Viewing and modifying guidance Aside from specifying
the solution from which the engine is to search, the user
guides the solution-crafting process using two mechanisms:
high-level guidance, pertaining to the composition of an ob-
jective function over a small set of criteria; and by low-level
constraints and preferences. The left panes of Figure 1 show
these elements.



The high-level guidance consists of a set of slider bars,
specifying the weight of each criterion of the objective func-
tion. Currently, Pisces accommodates four criteria: Stabil-
ity, a measure of the similarity between a candidate solution
and a distinguished solution marked as the stability refer-
ence; Number of Activities; Resource Load Balance, a mea-
sure of how evenly distributed is the load over resources of
a common type; and Robustness to Resource Changes, an
aggregate measure of how many activities would be jeopar-
dized for each resource that fails.



Two preferences and constraints are shown in the lower-
left pane. The first says “Reduce peak in 92ARW.KC135
to a maximum value of 12 within window [Jun 16, 11:41pm,
Sep 28, 2:54pm]”. This preference was stated by the user
highlighting the resource profile of 92ARW.KC135 in the
given time window (the green area in the bottom center of
Figure 1, highlighted with a circle). The second preference
says “Stability reference: SOLUTION 0”, which indicates
that SOLUTION 0 is the reference solution when calculat-
ing the stability metric.1



Although the criteria and preferences implemented to date
in Pisces are generic, the system is architected to allow easy
customization to a given domain, including specification of
domain-specific guidance.



1Stability is computed from commonality between which ac-
tivities are included in each of a pair of schedules, the resources
assigned to them, and their time windows.



Scheduling Engine
The Pisces scheduling engine uses constraint-based, incre-
mental reasoning [2]. Other than domain constraints, the en-
gine supposes that all constraints, including resource capac-
ities and user-stated guidance, are soft. Violating a prefer-
ence or constraint in the user’s guidance produces a smaller
penalty and visual impact than violating a constraint from
another source. Based on constraint violations, preference
achievement, and objective function, a score is computed
for each found solution to the current scheduling problem.



A ubiquitous difficulty with constraint reasoning is to find
an objective function that is sufficiently expressive to cap-
ture the notion of what makes an optimal solution, but sim-
ple enough for current constraint reasoning algorithms [7].
In our motivating domains, the user’s notion of ‘best’ leads
to objective functions beyond the ability of current con-
straint solvers to quickly produce optimal solutions. While
our weighted sum objective function approximates the user’s
true objective function, the Pisces user is enabled to craft
their desired solution by the combination of the iterative col-
laboration with the system together with the full range of
guidance (i.e., low-level preferences and constraints as well
as the high-level, simplified objective function). Moreover,
fortunately, in many real-world problems, absolute optimal-
ity is only important in cases where there is a single objec-
tive, such as to minimize cost or maximize throughput.



Since, for these two reasons, we do not require glob-
ally optimal solutions, the Pisces engine implements a local
search, repair-based scheduling algorithm that uses the ob-
jective function as a heuristic [9]. The primary search step
consists of inserting and removing activities in order to re-
pair constraint violations. A tabu list helps the search escape
from local optima. While the globally optimal solution is not
guaranteed, the engine provides its current locally optimal
solution in an anytime fashion. This ability is important for
the incremental solution crafting approach. When a prob-
lem is loaded, the engine finds an initial solution by a rapid
greedy construction.



Data Flow
Architecturally, the Pisces engine and the UI are separated.
They share a common data space and react to changes in
data (e.g., when the engine adds a solution to the solution
set, the UI will update accordingly). This separation enables
easy future extensions to both algorithms and UI.



Figure 2 shows how information flows between the user,
the scheduling engine, and the UI. Because the two agents
(the user and the engine) act continuously and indepen-
dently, Pisces operates in an asynchronous manner. Starting
from a designated solution, the engine continuously searches
for improvements according to the current objective func-
tion; whenever an improved solution is found, it is added to
the solution set. Note that the solution the user is viewing
in the UI will in general differ from the solution the engine
considers currently optimal; both the viewed and optimal
solutions should be distinguished from the solution the user
has marked as ‘best’. The user can opt to have the displayed
solution automatically kept synchronized with the currently
optimal solution.
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Figure 2: Pisces data flow. Note that during execution, resource changes and mission failures are fed into the problem repre-
sentation (shown as Activities/Resources), and are immediately sent to the scheduling engine.



The engine listens for changes in the problem and changes
in the objective. From the engine’s point of view, these
can change only when the user clicks ‘Submit Instructions’.
When this occurs, the engine restarts its search from the sta-
bility reference. It first re-evaluates each solution in the so-
lution set according to the new objective function. Based
on the new objective function, the solution previously con-
sidered optimal by the engine may no longer be optimal.
Assuming that the user does not have a solution locked into
view, the displayed solution is updated to the newly optimal
solution, providing an instantaneous response to the user.



Since the database of found solutions has the potential to
grow large, Pisces removes solutions that fare poorly on the
most recent guidance, after the number exceeds a threshold.



Schedule Execution
Pisces was designed with execution in mind. Although the
system has yet to be connected to a real-time schedule exe-
cution and monitoring environment, the system contains two
main features that aid execution. First, Pisces provides the
user a means to specify a ‘blackout window’, which speci-
fies a range of times in which the schedule must not change.



Second, the system is responsive to any resource or mis-
sion changes that result during execution. Thus, if a set of
resources suddenly becomes unavailable, Pisces will react
to quickly generate new solutions and update those already
found. The user can view the new solutions and, if she
chooses, change her designation of the ‘best’ solution.



Illustrative Use Case
Consider a military commander, John, whose task is to
schedule and allocate resources to air missions in the AMC
domain. At any time, there is a large set of mission re-
quests, each with a priority, time constraints, and resource
constraints. John’s subordinates monitor the mission re-
quests and maintain the predicted availability of each re-
source (plane) over time.



When John loads Pisces, the engine immediately begins
finding solutions to the problem using the default guidance
and displays the first solution. John decides that he wants to
maximize the number of scheduled missions, indicating this
by adjusting the ‘Number of Activities’ slider bar. Pisces
quickly starts displaying solutions packed with activities.
Liking what he sees, John names one of the displayed so-
lutions as MaxMissions, and marks it as a favorite.



Using the solution-at-a-glance view, John can see that
most of his resources are at capacity in the early part of
the schedule, and that — even with the engine including as
many activities as possible — the later part of the schedule
has only sparse resource usage. He zooms in to focus on the
early part of the schedule.



Because resource usage is heavy in the early part of the
schedule, John realizes that only a few failures in resources
or unanticipated events during execution could wreck the
likelihood of successful execution of the schedule. He there-
fore decides to slightly lower the importance of ‘Number of











Activities’ and significantly increase the importance of ‘Ro-
bustness to Resource Changes’.2 New schedules begin to
appear and John marks a few as favorites. John checks the
‘Unscheduled activities’ tab and finds that an important mis-
sion is not included in any of these schedules. He selects
‘Force inclusion of this activity’. This leads the engine to
produce a solution that John marks as ‘best’.



New information arrives from the field indicating changes
in expected resource availability. In one case, a wing com-
mander indicates that, while all his resources will be avail-
able, he plans to perform much needed maintenance during
May. John highlights the month of May for that air wing
and selects ‘Reduce resource peak by 20%’ (see Figure 1).
He marks the current best solution as the Stability Refer-
ence and maximizes the importance of the ‘Stability” crite-
rion. The engine then finds a solution very similar to John’s
marked ‘best’, but with resource usage reduced in the key
area; he marks this solution as ‘best’ in place of the former,
and selects it for execution.



Ongoing Work
Pisces represents an exploration into ways of combining the
strengths of algorithmic approaches to scheduling with the
power of humans to understand schedule quality and the
nuances of domain constraints. In this respect, the system
occupies a range of positions on the Interface-Proactivity
continuum [6]: from ‘Tells You What to Pay Attention To’
through ‘Makes Decisions’. While Pisces has the ability to
autonomously solve a given scheduling problem, it primar-
ily provides the user with a mechanism to craft the solution
by means of high- and low-level guidance.



The focus of Pisces development thus far is in the mixed-
initiative user experience, and problem-solving collabora-
tion between the user and the system. We have three main
future directions. The first is expanding our scheduling en-
gine and corresponding representation to handle domains
more expressive than the AMC domain (enhanced expres-
siveness and configurability). This includes handling con-
straints between activities, uncertainty in resource usage,
and uncertainty in activity duration. The second direction is
developing more sophisticated visualizations, both domain
dependent and domain independent. The final direction in-
volves exploring integration with knowledge-rich planning
[12; 16] and a shared problem representation with planning
and execution systems.
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2At present, these statements of high-level guidance apply to
the whole schedule; the user cannot state such guidance to a subset
of activities or over a designated time window.
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Abstract



In this paper we analyze the lessons learned during
three projects that are being developed between our re-
search group and our spin-off IActive Intelligent Solu-
tions. These projects are based on the deployment of
AI planning technology in three different business en-
vironments with a different degree of maturity in ICT.
In these three cases we will focus on how to extract do-
main and problem files and how to integrate action plans
with existing information services on the end-user side
in order to facilitate the integration of P&S technology
with legacy software and end-users work environment.



Introduction
Artificial Intelligence Planning research community has al-
ways kept an eye out for applying its technology to real
world problems and reach an industry level deployment
comparable to that of other disciplines like neural networks,
genetic algorithms or fuzzy logic, just to mention some of
them. Despite being a relative old discipline, at least older
than most of those mentioned before, planning technology
has some very good examples of applications but it does not
seem to be mature enough to lead an enterprise-wide de-
ployment and to be part of the whole enterprise or business
jigsaw puzzle.



There may seem to be many reasons behind this lack of
success like the need for efficient planning algorithms, the
need for enhanced underlying reasoning processes (uncer-
tainty, time, resources, ...), the need to deal with exogenous
events or sensing operations among others. These are some
of the lines that are being pursued from the own research
community to bridge this well known gap. Although all
of these problems focus on the inner part of the planning
piece of Figure 1, and this is an important effort to drive this
technology forward, there are other important questions that
should also be addressed with regards to insert the planning
piece into the whole puzzle. Both categories of problems are
very important, but papers that fall on the former type seem
to dominate in mainstream conferences. Here, we intend to



∗This work has been partially supported under the research con-
tract NET033957/1 with the Andalusian Regional Ministry of En-
vironment and the CICYT Project TIN2005-08945-C06-02
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Figure 1: The enterprise-level (business-level) integration
puzzle



share some of the interfacing issues of the second type that
we have learned from our past and current experience that
started in our research group and is now being undertaken at
our spin-off IActive Intelligent Solutions1.



The main issue: knowledge integration
One of the most distinguishing features of planning technol-
ogy is that it is a knowledge-intensive task, that is, planning
a solution to a problem in a human-centered environment
implies taking into account a lot of knowledge about the
problem being solved. This knowledge comes from many
different and, mostly, heterogeneous sources and it must be
“prepared” somehow to the PDDL (Edelkamp & Hoffmann
2004) input gateway (or similar) to our state of the art plan-
ning engines in the form of problem and domain files. In
addition to this, the solution plan must also be processed to
fit into the structure of the whole puzzle. Therefore we must
analyze how these inputs and outputs of our planning algo-
rithms impact into the remaining components of the puzzle
and try to reduce this impact as a way to ensure (part of) the
success of the planning technology.



In our very modest point of view, the integration of AI
planning technology into any existing enterprise or business
environment must take into account the following points:



• Technology is an enabling factor of change, not the



1http://www.iactive.es











change itself. That is, the integration of new technol-
ogy should not produce a change for the environment to
adapt to it, instead, technology should adapt to the exist-
ing business environment. This is very important because
business stakeholders (decision makers, actors and man-
agers) are not intended to know about planning domain
languages, nor logical predicates nor any other formalism
planning researchers are used to deal with. So there must
be a mapping between the language that business stake-
holders are used to deal and the language that our planners
handle. This mapping is not only a matter of translation
but it may also imply a hard work on knowledge extrac-
tion and validation.



• Technology must be as transparent as possible. Business
environments are plenty of software for their daily work
and we do not foresee the planning engine to be a stan-
dalone application by itself. Instead, we do foresee a plan-
ning engine as something as a “plug and play module” or
a “helper application” for legacy software so end users
may have access to planning technology from and to their
everyday applications.



The combination of these two points is, therefore, an im-
portant issue to get planning technology integrated into the
whole business puzzle. They are not exclusive of AI plan-
ning technology, but it is also shared with other mature
AI technology. However, planning technology strongly de-
pends on the representation of operational knowledge2 and
this knowledge is not easily available in a explicit form in
these environments, so its integration appears to be more dif-
ficult. In a increasing number of cases, business stakeholders
are starting to pay more attention to business process model-
ing and management so that they use different languages to
represent their operative knowledge and to execute and mon-
itor their business processes. In the best situation, extracting
the operative knowledege required for the planner becomes
easier and less costly. Easier because all the processes are al-
ready modeled and described by the own end user so a plan-
ning domain expert only needs to query these models and
translate the required details into a planning domain descrip-
tion language like PDDL. And less costly because, if this
translation process could be done automatically, any main-
tenance change on the business rules or processes made by
the end users, are immediately translated into the planning
domain without the intervention of planning domain experts.



In the forthcoming sections we discuss how the consider-
ation of these points have affected to three different projects.
In all of them there was a need to integrate AI planning tech-
niques but none of their end users was supposed to know
about these techniques nor artificial intelligence in general,
so the integration of the planning piece in their correspond-
ing business puzzle was a subtle issue.



2Operational knowledge must be understood as the knowledge
about how to get things done, as opposite, or at least different, to
descriptive knowledge about how things are.



First case of study: crisis management in
Andalusia



In (Fdez-Olivares et al. 2006) we were (and in fact we still
are) engaged in the application of planning techniques to
help fire directors to define a forest fire fighting plan in An-
dalusia (Spain), it fully covers the stages of preparedness
and response and it might be generalized to any other crisis
situation. End users are fire directors, in charge of making
the main decisions and driving all the operations during the
episode, and technical and administrative staff in their chain
of command, who are responsible of launching execution
orders, monitoring the execution of the plan and updating
administrative information.



The problem
The description of the initial state of the problem must con-
tain an exhaustive description of all the fire fighting re-
sources in Andalusia. This implies the representation of
large amount of information about facilities (32), brigades
(341), pumping vehicles (94), spraying helicopters (27), etc.
The goal of the problem must be described in terms of the
geographical deployment of operational areas and the target
operations. The main issue here is that the planner needs
this information and this information is being queried and
updated daily by human operators as well, who are not in-
tended to know anything about PDDL nor other planning
formalisms. Obviously, there must be a common represen-
tation, accessible both by human users and by the planner
with the following features:
• It must be rich enough to represent all the knowledge re-



quired for the planner.
• It must be easily accessible by human operators to query



and update daily operations, with no training effort on any
additional language.



• It must be easily accessible by the planner to extract the
required knowledge into a PDDL problem file.



Figure 2: Integration of the first case on crisis situations



The representation chosen was an underlying ontology
designed in Protégé3 with a MySQL back-end to support an
efficient and concurrent access to the information. On top of



3http://protege.stanford.edu











this ontology we built a web service with a clearly defined
API. This web service may be used either from a web por-
tal (so that administrative staff easily query and update the
knowledge in the ontology through any web browser, see
Figure 3) or from an existing GIS application4 (so that tech-
nical staff may easily introduce the geographical layout and
target areas of the goal, see Figure 4)



Figure 3: Access to the knowledge base through a web
browser for administrative purposes



Figure 4: Access to the knowledge base through ArcMap for
technical purposes



The domain
The current degree of maturity on ICT of the forest fire
fighting service in Andalusia does not allow them to have
formalized their fire fighting protocols in any well known
process language like OWL-S or XPDL. Instead, they only
have training and working documents that explain these pro-
tocols. Therefore, we decided to encode the domain by hand



4ArcMap by ESRI http://www.esri.com



for our HTN planner, as an HTN extension of PDDL 2.2
(Castillo et al. 2006), and keep it away from administra-
tive and technical staff so that only a planning expert may
update and modify it. We were not happy with this deci-
sion because neither administrative or technical staff may
have access to the fire fighting protocols encoding and thus,
their independence (and therefore the transparency of plan-
ning technology) was severely reduced. This was manda-
tory since, currently, administrative and technical staff are
not expected to be introduced in process description lan-
guages. However, Andalusian administration is introducing
these languages gradually at all the levels of the adminis-
tration and we foresee that, in a near future, forest fighting
technical staff will be skilled enough to formalize and repre-
sent their fighting protocols in some of these languages and
then, the adoption of our planning technology will be much
more transparent, as it is shown in the next cases of study.



The plan
Finally, the planner has been integrated as an additional tool-
bar of the ArcGIS suite so that it is called just by clicking
a button on their everyday desktop. The plan obtained by
our planner is also introduced in the whole business puz-
zle of the technical and administrative staff. Our planner is
able to obtain the plan in an enhanced XML format that in-
cludes, all the temporal constrains (direct and inferred con-
strains), binding of variables and annotations gathered dur-
ing the search process. This allows us to translate this XML
plan into other formalisms like a chronogram for the GIS
platform, a MS Excel file, a Gantt chart or a proprietary for-
mat of the technical staff (Figure 5).



Figure 5: A proprietary format for plan visualization



As may be seen, introducing the plan into the legacy soft-
ware infrastructure is the easiest task given our enhanced
XML representation of the plan.



In summary, planning technology has been introduced
silently, integrated with the regular working environment of
the administrative and technical staff (web browsing, GIS











software, spreadsheets and Gantt editors). The unique draw-
back is that technical staff cannot modify the domain by
themselves but through our intervention. This is a matter of
the maturity of the forest fire fighting field and it is expected
to change in the near future with the adoption of standard
business process modeling languages.



Second case of study: learner centered design
This second case focus on the distance learning field, partic-
ularly in what is known as learner centered design. In this
case, the introduction of planning technologies allows us to
define customized learning paths for a given course. That
is, the goal is the arrangement of the resources associated to
the course taking into account the goals selected by the in-
structor and the own needs, features and constraints of every
student, so that every student in the same course will have
its own learning path to the goals.



Figure 6: General view of a Learning Management System



A Learning Management System (LMS) is composed of
several related databases (Figure 6):
• The learning objects repository contains all the ed-



ucational resources (documents, videos, photographs,
schemes, etc) that could be linked to make up a course.
Every learning object is labeled by means of an exten-
sive set of standard metadata (IMS-GLC 2007) so that the
instructor may describe the main features of the learning
object and its adequacy to different student profiles.



• The user profiles database contains extensive information
about each student: personal data, preferences, learning
style, academic history, his/her hardware/software plat-
form and others. It follows the IMS-LIP standard (IMS-
GLC 2007).



• The learning objectives are specified by the instructor for
each course, so all the students of the same course are
intended to reach the same goals.



• The learning design database contains a timed sequence
of learning objects that each student must follow to reach
the course’ goals adapted to his/her own features. It fol-
lows the IMS-LD specification (IMS-GLC 2007).



The goal of a LMS is to serve as a framework for the defini-
tion of a course and for the student to follow that course in a
distance learning setting.



The introduction of planning techniques in this environ-
ment may be described by the following steps (Figure 7:



Figure 7: Integration of AI planning into the ILIAS Learning
Management System



1. The learning objects repository is labeled using a exten-
sive set of standard metadata, mainly a specific subset
of metadata that encode the structure and dependence of
the learning objects (for more details see (Castillo et al.
2007)).



2. (Dotted lines) The instructor explores the repository and
define the learning objectives of a given course.



3. (Dashed lines) Our system explore the different databases
of users profiles, learning objects and learning objectives
and generate the necessary PDDL 2.2 (Edelkamp & Hoff-
mann 2004) files for our HTN planner to run. The planner
is executed and a customized learning plan is obtained for
every student registered at the same course.



4. (Dotted/dashed lines) The learning plan is translated into
a form playable or understandable by the LMS, usually
under the IMS-LD specification.



5. The plan is executed (or played) by the student to follow
the course adapted to its own features and needs.



The problem and the domain



This case of study provides a more formal framework for
inserting planning technology since the standards used for
labeling metadata and user profiles provide a great amount
of knowledge (Figure 8) that can be exploited to extract de-
scriptive and operational knowledge for the planner. In par-
ticular in (Castillo et al. 2007) we show that this knowledge
is rich enough so as to automatically extract the problem
and the domain files for a HTN planner from a SOAP inter-
face (W3C 2007) provided by the web services of the IL-
IAS LMS (ILIAS 2007), a well known platform for distance
learning.



These metadata are introduced directly from the LMS
(Figure 9) and they all belong to the standards commonly
used in distance learning, so there is no additional impact on
end users (instructors).











Figure 8: An exhaustive labeling of learning objects (com-
pound objects in light shadow and simple objects in darker
shadow) showing ordering, dependence and composition re-
lations. It also shows that every simple object may be la-
beled with other features like its language, its hardware and
software requirements, its degree of difficulty and its option-
ality amongst other



Figure 9: All the metadata and profiles are introduced
through the standard web interface of the LMS



The plan
The HTN domain and problem files, which are automati-
cally extracted from the LMS, are fed into the planner and
a plan is obtained for every student registered in the same
course. Although each plan might be different, all of them
will allow students to reach the same goals, but taking into
account the special features of each student. Finally, this
plan is inserted back into the LMS to be played in the form
of a IMS-LD compliant file.



In summary, the cost of introducing planning techniques
in this business environment is dramatically reduced and
the technology is fully transparent to end users (instructors).
The effort made by the instructor to encode the metadata of
the learning objects, something that can be considered usual
in any LMS, is enough for obtaining the most subtle part of
the planning piece: the problem and the domain files. Later
on, the plan is easily inserted in the LMS platform with no
additional cost. This means that, if end users are skilled on



some high level formalism for their daily work and this for-
malism is able to encode some descriptive and/or operative
knowledge useful for the planner, then we can extract prob-
lem and domain knowledge directly from these formalisms
without having to depend on others (planning experts) nor
having to learn a different formalism. The following case
follows this argumentation and introduces a third case of
study in which end users are skilled in a process description
language.



Third case: semantic web services composition



Semantic web services techniques support the way in which
already existing syntactic web services can be extended with
a semantic layer in order to be automatically discovered,
composed and invoked. The main goal of this third case
of study is to provide a logical framework for an HTN plan-
ner to be capable of both interpreting SWS descriptions and,
given a high level service request, reasoning about them in
order to automatically compose and execute a sequence of
web services that provides the service requested (see (Fdez-
Olivares et al. 2007) for more details). There are several
standard proposals for SWS but OWL-S (Martin et al. 2003)
is a very good choice to this purpose for the following rea-
sons. On the one hand, OWL-S process model allows to
represent web services as processes with typed input/output
parameters, preconditions and effects and a compositional
hierarchy of atomic and compound processes. And, on the
other hand, it is based on a data model built on top of
an OWL ontology consisting of classes, properties and in-
stances. Therefore, our goal, in this case, is translating the
OWL-S process and data models into an HTN extension of
PDDL 2.2 domain and problem files, call the planner and
obtain a plan as a timed sequence of actions that could be
used as an executable sequence of web services to give a
response to the high level service request.



Figure 10: Our system has been embedded into an OWL and
OWL-S editor environment as Protégé











The problem and the domain
The translation process first maps the OWL data model into
the PDDL data model by translating OWL classes, prop-
erties and instances into PDDL types, predicates and ob-
jects, respectively.Then it maps the OWLS process model
into an HTN domain that represents the operation of both
atomic and composite processes as primitive tasks and task
decomposition schemes, respectively. Atomic processes are
mapped as PDDL durative actions and the workflow pattern
of every composite process is mapped into a method-based
task decomposition scheme that expresses the operational
semantics of the control structures found in that composite
process.



The plan
The planner makes use of the knowledge encoded in the do-
main (representing the OWL-S process model) as a guide
to find a sequence of temporally annotated primitive actions
that represents a suitable composition (with possibly paral-
lel branches) of atomic processes. This sequence is sent to
a Monitor module that is in charge of both scheduling the
execution of atomic processes according to their temporal
information and sending execution orders to an Executive
module. This module is in charge of executing web services
invocations and sending back the information.



Figure 11: The integration of our HTN planner into a web
service composition based business environment



In summary, this last example has also shown how a plan-
ning engine may be seamless integrated into environments
with a strong underlying formalization of processes. In this
case, it is a web service composition based environment and
domain experts are supposed to have skills on process design
languages like OWL-S (in the case of other languages, the
procedure would be similar). The point is that their business
models written in OWL-S are rich enough so as to extract
valid PDDL domain and problem files, so the introduction of
planning technology is fully transparent for these end users
and it may be fully embedded into their existing working
environments.



The way forward
After these three cases, we have learned two important
lessons that might be considered complementary. On the



one hand, there is a common issue about the integration
of AI planning technology into existing business environ-
ments, what imply the need to share the information between
end users and the planner. AI planning needs much knowl-
edge and most part of it is dynamic, it depends on end-users
databases and not only the user but also the planner may
modify this knowledge, so there must be a common repre-
sentation of the knowledge or, at least, a gateway to get the
knowledge from and to the available sources. No one will
accept to replicate their data or re-type it by hand as the in-
put to the planner. The planner must adapt to the existing
structure of the data and get what it needs wherever it is.
In most cases, the sources of knowledge are very heteroge-
neous since end users may have its information distributed
on different platforms, operating systems or database sys-
tems. This also implies that the target environment must be
either based on, or ready to adopt, a service oriented archi-
tecture (SOA) based on the extensive use of web services, in
order to enable this interoperability of different platforms
and to grant access to the whole set of data available in the
enterprise. In the case that the target environment is not
adapted to a SOA, the planning module might be a catalyst
for the introduction of such technologies since it is the main
interested part in having a common access to the whole en-
terprise data (Fdez-Olivares et al. 2006).



On the other hand, and very related to this, it is the ques-
tion about the level of automation of the workflow manage-
ment at the target business environment. In the case that
this business environment has automated (or is automating)
its operational processes within what is known as Business
Process Management (BPM) (Fischer 2007) that takes into
account resources, employees, applications, documents and
the own organization, the application of AI planning tech-
nology seems to be less costly. It would also be less in-
dependent of third party planning experts, since all of the
knowledge needed to encode domain and problems for the
planner may be extracted from their BPM suites (like in
cases 2 and 3 before). This is becoming particularly good
since most relevant enterprises are currently engaged in a
process of automation of their operational business pro-
cesses by using standard languages like OWL-S but mostly
XPDL and BPEL (Fischer 2007) and there is a clear map-
ping between these languages and our planning domain de-
scription languages like PDDL either for plain or HTN do-
mains (Castillo et al. 2007; Fdez-Olivares et al. 2007;
Sirin et al. 2004). Since BPM suites integrate business
analysts, technical developers and business managers, they
can modify their business rules by themselves and the plan-
ning domain will be automatically updated, without the in-
tervention of external planning experts and thus, increasing
the transparency of this technology. Even more, these BPM
suites are strongly based on the use of an underlying SOA,
what provides the best context for a seamless and deep inte-
gration of AI planning technology. In the case that the target
environment is not aware of this BPM technologies, the im-
plantation of AI planning would be more difficult since busi-
ness experts will still depend on planning experts to mod-
ify planning domains as soon as their business rules change
(like the first case in this paper).











In any case it is worth to recall that these issues of trans-
parency and integration of AI planning technology are a key
factor to implement and deploy our technology, that is, we
must seamlessly integrate with end users data, but also with
their business rules, so that we do not induce a change on the
enterprise before the adoption of our technology but reduce
the impact that this technology might have after adopting
our technology.
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Abstract



Deploying AI, and specifically P&S, technology into the real
world entails many stimulating problems for researchers and
system designers. Various smart solutions have been pro-
duced both for specialized problems and, in fewer cases, for
more general purpose domains. An important aspect which is
fundamental for any successful application, and more specif-
ically for those which address a broad audience, concerns the
users’ perception and acceptance of technology. This issue is
often either neglected or underestimated.
We have been working for two years on the issue of import-
ing experimental techniques from HCI and experimental psy-
chology into smart system development. This approach has
both pros – interesting features from the user perspective are
discovered and can be used to bias design and research activ-
ities – and cons – experimenting with humans adds additional
difficulty to the project, and applying a correct methodology
is very time consuming.
This paper describes a fielded experimental investigation of a
fully implemented AI system named ROBOCARE. The sys-
tem uses constraint-based scheduling technology to actively
monitor a pattern of activities executed by an assisted per-
son and uses detected temporal constraint violations to trig-
ger meaningful and contextualized proactive interaction. Di-
alogue with the users is managed by a robotic mediator who
acts as the main communication channel between the users
and the intelligent domestic environment. The paper presents
an evaluation of elderly people’s perception of the intelligent
system, focusing on aspects related to the robot’s aspect, in-
teraction modalities, content and timing of interaction, pro-
viding suggestions and hints for system designers.



Introduction
The development of real applications of intelligent systems
is often driven by the need to interact with users. Several
projects have dedicated effort to develop front-ends for user
interaction and/or more sophisticated mixed-initiative sys-
tems that more deeply involve human beings in the activity
of the intelligent system. The connection with users is very
often a very important enabler for the actual use of intelli-
gent systems. This has been demonstrated by experiences
in systems developed for several tasks in specialized do-
mains, see as examples MAPGEN (Ai-Chang et al. 2004)
and MEXAR2 (Cesta et al. 2007a) in the space domain, and
AMC BARREL ALLOCATOR (Becker & Smith 2000) and



PASSAT (Myers et al. 2003) in military domains. A com-
monality among these very different systems is represented
by their being dedicated to specialized users in restricted
work environments, that somehow are aware of the role of
an intelligent system and its ability to provide precious as-
sistance in decision making. Nevertheless, the interaction is
somehow a key issue for acceptability.



Further work attempts to address more broad applica-
tion areas very close to consumer markets. In applica-
tions for everyday life, e.g., (McCarthy & Pollack 2002;
Refanidis 2007) or more specifically dedicated to older peo-
ple, e.g., (Levinson 1997; Pollack 2005; Cesta et al. 2007c),
the acceptance of advanced services by users is paramount.
How can we rely on the fact that the advancement in flexi-
bility and partial automation offered by our technology will
become an added value also for users that are not as special-
ized as in other cases (e.g., space, military) but rather are not
even well acquainted with modern information technology?
In light of the failures of AI in the 70-80s it is worth asking
ourselves additional questions w.r.t. user acceptability.



For the purpose of evaluating user response to mixed-
initiative systems we have been importing experimental
techniques from HCI and experimental psychology (Cortel-
lessa & Cesta 2006). In the ROBOCARE project we have
also applied similar methodology and this paper specifically
reports on that part of our work. ROBOCARE (Cesta & Pec-
ora 2006) has involved research groups with different back-
ground with the goal of investigating how the use of intelli-
gent technology for supporting elderly people can improve
their quality of life, prolonging their independece at home.
The focus on the domestic setting is not only motivated by
the aim of improving home technology personalization, but
also by recent studies, e.g., (Giuliani, Scopelliti, & Fornara
2005), that underscore the relevance of the attachment of
elderly people to their home and the beneficial effects of in-
creasing their independence at home. This paper shows the
use of experimental methodology to judge the technical re-
sults of the project. In particular after three years of develop-
ing different advanced functionalities we have characterized
a fixed point in our achievement, and asked ourselves the
question ”we have understood what we are able to do: but
what exactly do potential users think of the system we have
achieved?”. We have set up a quite complex experiment and
found 40 people to take part in it. The rest of the paper de-











scribes the experiment and its outcome, showing a number
of interesting considerations that emerge from the data.



It may seem that we have found a sort of panacea for all
the questions we have with respect to users. Indeed there
is still a lot of work to be done. In particular, as we will
comment at the end of the paper, setting up an experiment
with people is an extremely demanding and specialized task.



The ROBOCARE Assistive Domain
The ROBOCARE Domestic Environment (RDE) is the result
of a three year project aimed at developing cognitive support
technology for elderly people. Our focus on the domestic
scenario stems from a series of studies of different physi-
cal environments for elderly people (Cesta & Pecora 2006).
The main “actor” in our smart home environment is a robotic
agent with verbal interaction capabilities. The interaction
content is generated through the combination of different in-
telligent systems and environmental sensors. A complete de-
scription of the technology is given in (Cesta et al. 2007b).
Here we present a minimal description that should allow the
reader to understand the experimental setup.



Figure 1: Interactions in the ROBOCARE environment.



The objective of the RDE is to provide support in the man-
agement of an elderly person’s daily activities. To this end,
the RDE, sketched in Fig. 1, is composed of two fundamen-
tal subsystems. On one hand, an “intelligent observer” of
the assisted person: information coming from environmen-
tal sensors1 is used for maintaining an updated representa-
tion of what is happening in the environment. The sequence
of observations from the artificial vision sensors allows to
follow the evolution of the activities of the observed person.
Based on the synthesis of these observations, the system is
able to generate a report that reveals when the person’s ac-
tivities have been performed within “reasonable” temporal
boundaries or when important anomalies or even violations
on their execution have been detected. In this light, the
RDE’s basic functionality is an example of home Activity
Monitor grounded on scheduling technology. Notice that,



1At the moment sensors are cameras whose observation are
elaborated by artificial vision algorithms to extract useful features.



on its own, the domestic activity monitor acts as a “silent
observer” and does not take initiative with respect to the el-
der person in any way. On the other hand, the RDE also
provides an interface with the assisted elder through an in-
teractive subsystem. This subsystem is essentially a “proac-
tive assistant” which closes the loop between the elder user
and the intelligent environment, enabling the system to take
initiatives based on Activity Monitor inference.



Figure 2: Example of desired behavior specified by the care giver
for the assisted person in form of a schedule.



As a central component for activity management we have
employed an AI-based schedule management environment
called T-REX – Tool for schedule Representation and EXe-
cution (Pecora et al. 2006). T-REX allows to represent a set
of activities and their quantitative temporal connections (i.e.,
a schedule of activities that the user is expected to carry out).
These temporal constraints represent the behavioral require-
ments to which the assisted person should adhere. To be
more concrete, let us consider a behavioral pattern described
by a schedule composed of 6 different activities (breakfast,
lunch, dinner, as well as taking three different medicines).
Due to medical requirements, let us also suppose that such
activities must satisfy certain temporal requirements, such
as “dinner should not begin before 7:30 PM, nor should it
occur less than 5 hours after lunch” and “aspirin should only
be taken after dinner, but not too late”, and so on.



An “ideal schedule”, i.e., an enactment of these activities
which does not violate any temporal constraint, is shown
in Fig. 2. Broadly speaking, the objective of the Activity
Monitor is to recognize deviations from this ideal situation.
Specifically, the system should assess the extent to which the
user’s behavior deviates from this situation. This equates to
assessing which temporal constraints are progressively vio-
lated during the day. In a nutshell, system interventions are
driven by constraint violations: warnings, alarms and sug-
gestions result from violated constraints. System interven-
tions are processed by the interactive subsystem on board
the robotic mediator.



Managing Interaction with the User
As already mentioned, interaction within ROBOCARE relies
on an embodied robotic assistant as the focal point between
the user and the system. Communication between the user
and the robotic mediator occurs verbally. For the purposes
of this study, we distinguish two forms of interaction based
on who takes the initiative to start a dialogue:



On-Demand interaction in which the user takes the initia-
tive first. The assisted person commences interaction, for
instance, by querying the system’s knowledge base: “have
I taken my pills?”, or “can I make an appointment for to-
morrow at 5 PM?”.











Proactive interaction in which the intelligent environment
commences interaction guided by its internal reasoning.
Within ROBOCARE, constraint violations have been con-
sidered as a trigger for the system to take the initiative and
perform some actions: issue an alarm in case of illness, or
verbalize warnings and suggestions.



Our work explicitly focuses on the development of active
and, at the same time, unobtrusive services to integrate
within the artificial assistant. All interaction services rely on
the Interaction Manager. This module essentially consists in
a rule-based system that fires situation-action rules. In other
words, it continuously assesses the situation and activates a
particular submodule as an action.



The main “interaction occasions” managed in the current
version of the intelligent assistant are also shown in Fig. 1.
We categorize as On-Demand interaction the “Question/An-
swer” category of dialogues. This activity is triggered by a
speech input from the assisted person. The generation of the
answer is managed mostly internally to the manager that has
information on activity history and/or on the current state
of the environment, to answer questions like “Have I had
lunch?” or “What time is it?”, etc.



Instances of Proactive interaction are “Danger” and
“Warning” scenarios. Undoubtedly, one of the important
tasks for assistance is to recognize emergencies for the mon-
itored person. The emergency trigger is fired by particular
combinations of the input provided by the sensors that mon-
itor the environment and the assisted person. As an exam-
ple we can discriminate as a dangerous situation the case in
which a person is “laying down on the kitchen floor” or “lay-
ing down in bed half and hour after usual wake up”, rather
than “laying down in bed within an expected period” which
is recognized as a regular situation. The danger trigger is
dealt with by a specific behavior of the multi-agent system
that interrupts the usual flow of activities and undertakes an
action: the robot is sent to the assisted person, a specific
dialogue is attempted, and if no answer from the assisted
person is obtained, an Alarm is immediately fired to the ex-
ternal world (call to a relative, to an emergency help desk,
etc.).



A warning scenario is one in which constraint violations
are detected by the T-REX activity monitor. Broadly speak-
ing, the activity monitor decides the values for the variables
that are used by the interaction manager to trigger a proac-
tive dialogue with the assisted person. The content of the
dialogue is synthesized on the basis of the monitor’s internal
knowledge.



Overall the Interaction Manager in Fig. 1 is a quite sim-
ple planner that supervises the initiative of the “interactor”
towards the assisted person. It is worth underscoring how
the combination of this manager and the activity monitor
endows the whole assistive environment with capabilities of
proactive participation in a mixed-initiative interaction.



Experiments with Elder Users
The aim of the remainder of this article is to present experi-
ments aimed at understanding the perception of older people
towards the assistance that the robot (and thus the assistive



environment as a whole) is able to offer at the moment.



Previous Evaluations
A previous study (Scopelliti, Giuliani, & Fornara 2005), per-
formed at the beginning of ROBOCARE, was aimed at draw-
ing some preliminary desiderata and requirements for assis-
tive robots. This evaluation analyzed laypeople’s represen-
tations of domestic robots with respect to a variety of topics:
the users’ expectations with respect to the robot’s capabil-
ities to perform different everyday activities at home; their
emotional response to a domestic robot; the image of the
robot, referring to shape, size, color, cover material, speed;
preferences and expectancies about the robot’s personifica-
tion (given name, etc.) and the modalities of human-robot
communication and interaction.



Results showed that people overestimate manipulative
abilities and underestimate cognitive capabilities of the
robot, whose representation is somewhat unrealistic: a do-
mestic robot is still too far away from everyday life expe-
rience of laypeople. In addition, people at different stages
of their lifespan showed very divergent opinions and prefer-
ences. In particular, older people clearly indicated a pref-
erence for a small robot, hardly resembling a human be-
ing, which has to intrude as less as possible in personal and
domestic life; a device which is not autonomously free to
move in the domestic environment and simply responding
to tasks to be performed. In fact, while its practical utility
was recognized, the robot emerged as a potential source of
danger and discomfort in private life, and the idea of a non-
autonomous device seemed to be a way to ward off their
anxiety. Another issue to be addressed has to do with the
context in which the robot is expected to operate. The use
of new technologies and domestic robots in the home envi-
ronment is not only a matter of general human-technology
interaction, but is also associated with the specific sphere of
human life in which assistance is needed (Giuliani, Scopel-
liti, & Fornara 2005). Elderly people showed a rather posi-
tive attitude towards a technological modification in the do-
mestic environment, yet the inclination to use technological
devices is strongly associated to the problem they have to
cope with. In some situations, a technological aid seemed
to be unrealistic, or unpractical, or it would have better been
replaced by a more common alternative. In other cases, con-
cerning health and personal/environmental safety above all,
it emerged as a suitable solution to cope with losses imposed
by ageing.



The Present Study
The studies mentioned previously focus on users’ attitudes
toward a purely imaginary robotic agent, with unspecified
abilities and not operating in a real domestic environment.
For this reason, differences in users’ reactions could have
been related to both diverse knowledge and bias toward tech-
nologies.



The final prototype achieved by ROBOCARE allows us
overcome this limitation. The evaluation of a tangible robot
allows us to eliminate pre-conceptions and other biases. Per-
forming the evaluation on the RDE prototype allows us to
draw specific conclusions on the prototype itself, and also











(a) Non anthropomor-
phic version of the
robot.



(b) Robot showing a hu-
man speaking face.



Figure 3: The two experimental conditions of the robot.



to investigate some general issues relative to the challenges
of assistive technology for elderly people. This analysis
is in line with current recommendations for the evaluation
of complex assistive technology. For instance, it is recog-
nized in (Hutchins 1995) that human-robot interaction is to
be evaluated on socio-culturally constituted activities out-
side the design laboratory. In this light, the aim of our re-
search is to analyze the potential reactions of final users to
real life interactions between elderly people and an assistive
robot.



The present analysis considered eight different scenarios,
which were meant to be representative of daily situations
in which elderly people may be involved. The situations
were selected with reference to previous research on this
topic (Giuliani, Scopelliti, & Fornara 2005), ranging from
the most emotionally involving to less critical and emotion-
ally neutral, with the aim of exploring elderly people’s eval-
uations of the potential role of a domestic robot as a useful
support to ageing. Specifically, the study focuses on three
main aspects.



First, we perform an evaluation of how meaningful each
scenario is with respect to the respondents’ every day life.
This allows us to understand how useful state-of-the-art as-
sistive technology can be in real situations. Moreover, it pro-
vides a precious indication as to whether we are employing
this technology to solve real needs. Scenarios were arranged
in order to have evaluations of the robot in different typolo-
gies of interactive situations: we propose a main distinc-
tion between “On-demand” and “Proactive” scenarios. On-
demand scenarios imply an explicit request for the robot’s
activity by the final user; in proactive scenarios, the robot
autonomously intervenes in the domestic environment, for
both an emergency and a simple suggestion. The compari-
son between On-demand and Proactive situations is aimed to
offer a suggestion as regards the preferred level of autonomy
of the assistive device.



Second, we focus on the respondents assessment of our
robotic mediator. The analysis focuses on aspects related to
the physical aspect of the robot, its interaction capabilities,



and in general its suitability in the domestic context (e.g.,
size, mobility, integration with the environment).



Third, we observe user preferences with respect to robot’s
features evoking a human being. Although our robot is not
anthropomorphic, it is possible to deploy it in two slightly
different versions: one in which the robot has a 3D fa-
cial representation (whose lip movement is synchronized
with the speech synthesizer), and one without a facial rep-
resentation. These variants were used to toggle the vari-
able “Similarity to human beings”, which emerged as a key
component in elderly people’s representation of domestic
robots (Scopelliti, Giuliani, & Fornara 2005).



Materials. Eight short movies (ranging from about 30 sec-
onds to little more than one minute) were developed show-
ing potential interaction scenarios between an elderly person
and the RDE’s robotic agent in a real domestic environment
(see Fig. 4) .



Figure 4: Sample frames from the videos depicting the eight sce-
narios.



The features of the robotic agent were manipulated accord-
ing to two different experimental conditions: in the first
condition (“Face”) a robot showing a human speaking face
on a notebook monitor; in the second (“No-face”), a robot
with no reference to human features (see Figure 3). The
eight scenarios presented everyday life situations in which
the robot provides cognitive support to the elderly person,
and referred to critical areas, as highlighted by previous re-
search: (a) management of personal/environmental safety,
(b) healthcare, (c) reminding events/deadlines, (d) support
to activity planning, (e) suggestions. In the following, the
eight scenarios are shortly described.



Scenario 1 [Environmental safety] The actor/actress is sit-
ting on the sofa, watching TV. In the meantime, in the kitchen
the sauce on the stove is overcooking. The sensors commu-
nicate this information to the robot. As a consequence, the
robot moves toward the actor/actress and says: “The pot is
burning. You should turn it off”. The actor/actress immedi-
ately goes to the kitchen and turns off the stove.



Scenario 2 [Personal safety] The actor/actress is sitting on
the sofa, reading a magazine. Suddenly, he/she feels ill, and
faints. The camera recognizes the situation and communi-
cates this information to the robot. The robot approaches
the actor/actress and says: “Are you all right?”. As it gets
no answer, the robot calls the actor’s/actress’ son at work,











who calls the medical emergency. The final scene shows the
son and the doctor in the living room with the actor/actress,
who feels fine.



Scenario 3 [Finding objects] The actor/actress is sitting on
the sofa, and takes a magazine to read. Suddenly, he/she re-
alizes that the glasses are not on the table in front of him/her.
The actor/actress calls the robot and asks: “Where are my
glasses?”. The sensors in the rooms search for the glasses,
and finally find them in the kitchen. The robot answers: “The
glasses are on the table in the kitchen”. The actor/actress
goes to the kitchen and takes the glasses, then goes back to
the sofa and starts reading the magazine.



Scenario 4 [Reminding analyses] The actor/actress is in
the kitchen. He/she is about to have breakfast. When he/she
puts the pot on the stove to warm up the milk, the robot says:
“You cannot have breakfast now. You have an appointment
for a medical analysis”. The actor/actress answers: “You’re
right. I had forgotten all about it!”.



Scenario 5 [Activity planning] The actor/actress is on the
phone in the living room. He/she is speaking to the secre-
tary of a clinical center to get an appointment for a medical
examination. The secretary proposes an appointment for the
next day, with two alternatives: either in the morning, or in
the afternoon. The actor/actress asks the robot for eventual
engagements the following day. The robot answers: “You
have another engagement in the morning. In the afternoon,
you do not have any appointments”. The actor/actress ac-
cepts the appointment in the afternoon.



Scenario 6 [Reminding medication] The actor/actress is
sleeping on the sofa, and suddenly wakes up. He/she
does not realize what time is it, and thus he/she asks the
robot. The robot answers: “It is four o’clock”. The ac-
tor/actress does not remember whether or not he/she took
his/her medicine after lunch, and asks the robot. The robot
answers: “Yes, you took you medicine.”



Scenario 7 [Suggestions] The actor/actress is watching TV
on the sofa. It is five o’clock. The robot enters the living
room and says: “You have been spending all the day at
home. Why don’t you go out and have a walk?”. The ac-
tor/actress answers: “I really don’t feel like it... I think I’ll
go water the plants in the garden”.



Scenario 8 [Reminding events] The actor/actress is having
breakfast in the kitchen. The robot reminds him/her: “To-
day it’s your friend Giovanni’s birthday. Remember to call
him”. The actor/actress answers: “You are right. I will do it
right away”. Then he/she goes to the living room and calls
Giovanni.



Scenarios 1, 2 and 4 showed proactive situations referring
to domestic healthcare and emergencies; scenarios 7 and 8
showed proactive situations implying suggestions; scenarios
3, 5 and 6 showed on-demand interactions.



Tools. A questionnaire was developed for data collection.
It consisted of three sections, plus a final part for socio-
demographics. The sections were arranged as follows:



Section 1. Eight fill-in papers, each of them referring to one
of the eight scenarios, were presented. For each scenario,
questions about the likelihood of the situation for the elderly
person, the utility and acceptability of the robot were asked.



Section 2. An attitude scale, consisting of 45 Likert-type
items, referring to the physical aspect of the robot, its be-
havior and communication modalities; the level of integra-
tion with the domestic environment; the degree of perceived
intrusion/disturbance of the robot in everyday life and rou-
tines; the personal advantages and disadvantages of having
such a device at home.



Section 3. An emotional scale, consisting of sixteen adjec-
tives through which respondents have to evaluate the possi-
ble presence of the robot in their home.



In the Likert-type items, the respondents had to express their
level of agreement/disagreement on a scale ranging from 0
(“I totally disagree”) to 4 (“I completely agree”).



Participants and procedure. Subjects recruited for this
exploratory study were forty elderly people (aged 56-88;
mean age = 70.3 years). Participants were 13 males and 27
females; as for their educational level, 17.9% attended pri-
mary school, 43.6% attended middle school, 25.6% attended
high school, 12.9% have a degree. Most of them (82.5%)
are retired. Before retirement, 22.5% were teachers, 15%
were office workers. Subjects were randomly assigned to
one of the two experimental conditions (Face/No-face). The
movies were either projected on a notebook monitor, in a
face-to-face administration, or on a larger screen, in a small-
group administration. Two different sequences of scenario
presentation were used, in order to avoid the potential influ-
ence of an order effect of episodes on results. After viewing
each scenario, participants were asked to fill the paper refer-
ring to it (Section 1 of the questionnaire). At the end of the
whole presentation, subjects were asked to give general eval-
uations of the robot (Sections 2-3 of the questionnaire), and
to fill the final part of the questionnaire, referring to socio-
demographics.



Results
The results described in the following paragraphs, are ob-
tained from a combination of quantitative (ANOVA, χ2 and
Pearson’s correlation) and qualitative analyses of the user
evaluation questionnaires.



On-demand vs. Proactive scenarios. An analysis of
meaningfulness of scenarios shows that our selection was
effective in identifying typical everyday situations. On the
whole, both On-demand and Proactive situations involving
emergency and healthcare were evaluated as significantly
more common than Proactive situations referring to sug-
gestions; 3 in Proactive situations involving emergency and
healthcare the robot was evaluated as significantly more use-
ful than in On-demand and Proactive situations referring to



2The letters (a,b,c) indicate significant differences between ty-
pologies of situations.



3(F (2, 78) = 15.00, p < .001)











Table 1: Evaluation of the different types of situations. Users were asked to evaluate on a scale from 0 to 4.
Type of situation Meaningfulness Usefulness Preference



Mean2 St. dev. Mean2 St. dev. Mean2 St. dev.
Proactive (Emergency) 2.51a .59 2.74a .73 2.48a .87



On-demand 2.53a .67 2.44b .85 2.13b .97



Proactive (Suggestions) 1.99b .83 1.94c .98 1.76c 1.13



suggestions; 4 finally, the preference for the robot’s support
was significantly higher in Proactive situations involving
emergency and healthcare than in On-demand and Proactive
situations referring to suggestions 5 (see Tab. 1).



A global picture of the robotic mediator reveals a rather
positive perception. In particular, the robot emerged as a
very useful device for Personal and Environmental safety,
Reminding medications, and Finding objects; conversely,
not particularly useful in case of Suggestions (see Fig. 5).



In addition to utility, the robot was also indicated as a so-
lution users would accept when difficulties arise, again with
specific reference to Personal (M = 2.95, sd = 1.06) and
Environmental safety (M = 2.55, sd = 1.01). In general, a
significant correlation emerged (Pearson’s r) between mean-
ingfulness of a specific scenario, utility of and preference for
the robot in that scenario (i.e., the higher the meaningfulness
of the scenario, the higher the users’ perceived utility and the
probability they would accept such a device at home).



Figure 5: Utility of the domestic robot for everyday situations.



General evaluation of the robot. As to the different char-
acteristics of the robot, some Positive and Negative aspects
emerged (see Tab. 2).
Positive Aspects. Both face-to-face interaction with peo-
ple and communication modality were on average positively
assessed; in addition, elderly people favorably evaluate the
possibility to interact with the robot for a training to reduce
the loss in cognitive functioning. The overall integration
with the home environment is good, even though a total free-
dom of movement is not completely appreciated. Among
advantages given by the robot in the domestic environment,
it can make people living alone feel safer, it can provide a
support for cognitive functioning and, in general, in the or-
ganization of everyday activities.



4(F (2, 78) = 27.84, p < .001)
5(F (2, 78) = 20.83, p < .001)



Table 2: General evaluation of the robot
Positive Aspects Mean St. dev.



Face-to-face interaction 2, 60 1, 23
Communication modality 2, 33 , 62



Cognitive Training 2, 53 1, 24
Integration 2, 34 , 91



People feel safer 3, 23 1, 14
Support for activities 2, 98 1, 03



Negative Aspects Mean St. dev.
Managment difficulty 2, 95 1, 11



Economic costs 3, 25 , 84
Possible Dependance 2, 48 1, 45



Negative Aspects. Some troubles with the management of
the device (repairs, etc.) and the possible economic costs
are expected. Also, users seemed to worry about potentially
becoming dependent on the robot in certain cognitive tasks.
Finally, the emotional reaction of elderly people to the robot
was very good, scoring high on the positive adjectives use-
ful, interesting and relaxing, and scoring very low on the
negative adjectives scary, overwhelming, gloomy, danger-
ous, uncontrollable (see Fig. 6).



Figure 6: Emotional reaction of elder people to the robot (Means)



Similarity to human beings. As to this issue, our manip-
ulation emerged to be effective, being the No-face version
significantly preferred on the whole, specifically appearing
both less mechanical and less cold. The No-face version
was also evaluated as having a significantly higher level of
integration with the domestic environment and a larger va-
riety of advantages than the Face version, referring to ease
of use and a low need for repair6. In addition, elderly peo-
ple seemed to be more likely to develop a psychological at-



6overall preference: (F(1,38) = 6.34, p < .05); less mechan-
ical (F(1,38) = 5.11, p < .05); less cold: (F(1,38) = 7.25,











tachment towards the No-face version than towards the Face
version 7.



Discussion
This study addresses some general acceptability require-
ments for assistive robotic agents. The general framework
depicted by the On-demand vs. Proactive situations emerged
to be highly meaningful in elderly people’s experience, and
the evaluation of proposed scenarios plainly shows their
main concerns in everyday life and the potential role of a
domestic robot in supporting them. Elderly people perceive
a clear distinction between important and unimportant ac-
tivities to be performed at home. For those activities which
are perceived of greatest relevance, mainly concerning per-
sonal and environmental safety, the autonomy of the robot
in the management of the home environment and in taking
decisions proved to be a very useful resource. The robot
is also appreciated for its capability in responding to a spe-
cific need expressed by the user, especially when referring to
a cognitive difficulty associated with ageing, and involving
activities related to healthcare (e.g., remembering things to
do or what has been already done, with particular reference
to medications and analyses).



Conversely, a robot making suggestions regarding unim-
portant activities is perceived as a bit irritating. A well
defined relationship between likelihood of situations, per-
ceived utility of and preference for the robot emerged. In
the situation involving an emergency the preference for the
robotic support is higher than the perceived likelihood of the
situation itself, and the perception of utility scores highest.
Conversely, with respect to activities which are not consid-
ered to be essential in everyday life, elderly people show a
tendency to assign a low score on likelihood of occurrence,
and even lower scores on usefulness and preference.



Overall, even if emergencies are not likely to occur, their
central role in elderly people’s experience makes the per-
ceived utility of and the expressed preference towards a
proactive robot higher. This picture is in line with the model
of successful aging put forward by (Baltes & Baltes 1990),
which stresses the role of selection and optimization of ac-
tivities with increasing age, and the importance of compen-
sation strategies to manage the loss of personal resources.



A difference emerged when comparing our results
with other studies concerning evaluations of a domestic
robot (Scopelliti et al. 2004): our study highlighted that el-
derly people are not afraid of the robot’s autonomy, when
they can actually understand what a robot can do in the
domestic environment. In other words, a representation
grounded on unrealistic ideas (as the ones proposed by sci-
ence fiction) may negatively bias attitudes and expectations.



The overall evaluation of the robot emerged to be very
positive, with reference to many specific features, ranging
from interaction modalities to the degree of integration in the
domestic environment. In this respect, however, the issue



p < .05); better integrated: (F(1,38) = 5.65, p < .05); ease of use:
(F(1,38) = 9.36, p < .01); low need for repair: (F(1,38) = 4.33,
p < .05)



7(χ2 = 6.11, df = 2, p < .05)



of safety confirmed to play a key role in elderly people’s
experience and, though not anxious about it, they would like
the robot to move in the domestic environment only when a
specific task has to be performed.



The most distinctive feature of the robot was undoubtedly
associated to its practical utility, as emerged from both a
cognitive and an affective evaluation. The robot can help
people in the management of everyday activities requiring
an efficient cognitive functioning, which is likely to be de-
fective with increasing age. In addition, the presence of
such a device in the domestic environment appears to be
fundamental in making elderly people feel safer, especially
when they live alone. On the other hand, elderly people
also showed to be aware of potential troubles with the robot,
for both practical and psychological reasons. The practical
difficulties are mainly expected with reference to the price
they have to pay, both to acquire the assistive robot and to
keep it efficient. More importantly from a psychological
point of view, elderly people seem to forecast a potential
loss in personal autonomy depending on the robot, which
may lead them to reduce perceived competence and self-
efficacy (Bandura 1977), key factors for a successful ageing
of people (McAvay, Seeman, & Rodin 1996; Willis 1996;
Lawton 1982). In this respect, they showed to appreciate the
possibility to interact with the robot not only passively rely-
ing on its capabilities, but also through an active training to
enhance their cognitive functioning. Beyond the cognitive
component of their attitude, also the affective one emerged
to be definitely positive, being the robotic agent depicted in
terms of relaxation and interest, and hardly recognized as a
source of danger, fear and other negative affects.



The physical aspect of the robot emerged to be an im-
portant feature which can help support acceptability. Any
allusion to human beings seemed to have an impact on the
relationship between elderly people and their domestic en-
vironment. In particular, the No-face version of the robot
was definitely preferred, and the physical aspect proved to
affect also the evaluation of other features which are appar-
ently unrelated. In fact, the No-face version was perceived
as less artificial and psychologically distant from the user,
better integrated in the home setting and easier to manage.
In other words, the better the aspect, the stronger the percep-
tion of positive qualities attributed to the robot. This sug-
gests the occurrence of a halo effect, consistently emerging
in social sciences with reference to personality judgements
(e.g., (Asch 1946)).



Open Issues
Given its exploratory purposes, some shortcomings of the
present study should be recognized. First of all, our prelim-
inary results emerged from a small sample, and a stronger
statistical robustness is indeed needed. In addition, our study
presumably lacks external validity, in that our respondents
were rather well-educated and in general in sufficiently good
health conditions: the evaluation of a robotic agent which
has to be a support for impairments related to ageing may
be different when people are in a condition of critical need.
Nonetheless, our findings can be considered an intriguing
starting point to address the issue of acceptability of robotic











agents in everyday life of elderly people. One concern has to
do with the general role of a domestic robot in the everyday
experience of elderly people. In their eyes, the robot is per-
ceived as a practical device: they do not seem to be particu-
larly interested in matters of aspect, shape, cover materials;
and they would like it not to resemble a human being. On
the other hand, interaction which involves a face-to-face re-
lationship seemed to reduce a feeling of emotional distance
from this device. In this respect, it would be interesting to
evaluate in further research a possible difference in response
to a domestic assistive device which cannot move about in
the environment. An environmental system equipped with
software, sensory and speaking services would probably be
able to perform the same activities provided by the mobile
device shown in this study. At the time of writing, we have
started experimentation with a system which does not em-
ploy a robotic mediator for interaction rather the user com-
municates with the domestic environment through pervasive
microphones and speakers. The aim of this further study is
to understand how acceptability might be affected by such a
difference.



Conclusions
We have presented here a complete example of experimen-
tal methodology applied to a project integrating intelligent
systems. The contribution with respect to the workshop top-
ics is to point out the extreme difficulty that is connected to
developing intelligent applications, that include P&S tech-
nology, for the mass market. On one hand it is worth under-
scoring that these experiments are able to either reinforce or
contradict common believes on the utility of general features
of these systems. It is also worth noting the amount of work
involved in performing this type of experiments. Again the
conclusions mentioned in (Cortellessa & Cesta 2006) hold:
the effort to apply established methodologies such as the
above is rather time consuming but extremely precise and
useful. Some work still remains to be done in order to better
understand how to speed up and facilitate the application of
this kind of methodology in the specific context of mixed-
initiative system evaluation, and to understand further the
generality of the outcomes.
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Abstract



Traditional approaches to dealing with uncertainty in
planning have focused on finding plans that prevent all
potential failures. Though such plans are robust, their
creation is computationally expensive. This model of
planning does not capture the facts that 1) many times
the most likely branch of execution succeeds and 2)
even when that branch fails, replanning during execu-
tion frequently provides an alternate path to the goal.
In reality, the only failures that need to be planned
for before execution are those that are unrecoverable,
thereby preventing achievement of the goals. We have
developed a framework called Precautionary Planning
that combines interleaved planning and execution with
limited contingency planning. Precautionary Planning
adopts the view that contingency planning should be a
last resort and is not desirable when replanning is pos-
sible. In this framework, a robust initial plan is gener-
ated using a fast deterministic planner. Next, the plan
is analyzed to find potential points of failure, which are
identified as recoverable or unrecoverable. Recoverable
failures are left in the plan and are repaired through
replanning at execution time. For each unrecoverable
failure, an attempt is made to improve the chances of
recovery, by adding “precautionary” steps such as tak-
ing along extra supplies or tools that would allow re-
covery if the failure occurs.



Introduction
Uncertainty is pervasive in many of the planning prob-
lems relevant to NASA. For example, in Mars Rover op-
erations, there is inherent uncertainty about such things
as the duration of tasks, the power required, the data
storage necessary, and environmental factors that in-
fluence things like battery charging, or which scientific
tasks are possible or important.



Traditional approaches to probabilistic planning un-
der full observability involve the construction of a pol-
icy using some form of value or policy iteration (Put-
erman 1994; Boutilier, Dean, & Hanks 1999), or a
heuristically guided forward state space search such as
LAO* (Hansen & Zilberstein 2001) or LRTDP (Bonet
& Geffner 2003). One assumption that is shared by
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most planners implementing these approaches is that
all possible failures in the plan should be accounted for
at planning time. In other words, the policies are com-
plete contingency plans that account for every possible
outcome that might occur given the action descriptions.
These policies are certainly robust plans, but it can be
computationally expensive to generate them, since the
search space explodes as the number of relevant action
outcomes increases.



This work is inspired by the somewhat surprising suc-
cess of FF-rePlan in the first two International Prob-
abilistic Planning Competitions held in 2004 (Younes
et al. 2005) and 2006 (Bonet & Givan 2006). In 2004,
FF-rePlan won the competition, and though it was not
submitted to the 2006 competition, the organizers ran it
for comparisons. In both competitions, FF-rePlan was
able to cover more problems faster than the other plan-
ners. In place of dealing with uncertainty at planning
time FF-rePlan plans optimistically, considering only
the most likely outcome of each action, then monitors
execution and replans when failure occurs. However, re-
planning is useless when an unexpected action outcome
causes unrecoverable failure. For example, consider a
problem that requires driving through a remote stretch
of territory and then crossing the border into a differ-
ent country. A tire can go flat during the trip and can
only be replaced if there is a spare tire in the vehicle.
Additionally, gas stations may be far apart and may be
closed. The most optimistic plan is to just start the
journey, assuming that everything will work out. This
is exactly the plan that FF-rePlan would generate and
follow. Unrecoverable failure would occur if a tire went
flat and there was not a spare, or if fuel ran out because
a gas station was closed. In many cases, though, out-
comes like this are only unrecoverable when left until
discovered at execution time. In this example, planning
ahead by putting a spare tire in the vehicle and bringing
along a container of gas would prevent these dead-ends.



In this paper we describe an interleaved planning
and execution framework called Precautionary Plan-
ning that takes advantage of the speed of replanning,
but considers the possibility of unrecoverable failures
and attempts to avoid them. In this framework, first
a deterministic planner is used to generate a plan that











has a high probability of success. Then, a look-ahead
is performed to find action outcomes that would re-
sult in unrecoverable failures. At such points, an at-
tempt is made to improve the plan so that either the
undesirable outcome will not occur or it is possible
to recover from the outcome if it does occur. One
can think of this as a form of limited or incremen-
tal contingency planning (Dearden et al. 2002; 2003;
Meuleau & Smith 2003) since this approach starts with
an unconditional seed plan and attempts to incremen-
tally improve that plan by considering only the most
problematic action outcomes.



In the following sections we describe the details of
Precautionary Planning including the interleaved plan-
ning and execution framework, the generation of an un-
conditional seed plan, the identification of unrecover-
able failures, and the repair of those failures. Finally,
we discuss a preliminary implementation, related work
and some future directions.



Precautionary Planning
We assume that we are given a probabilistic planning
problem represented in PPDDL 1.0 (Younes et al. 2005)
where action outcomes are fully observable. Figure 1
shows a simplified version of the problem described in
the introduction expressed in PPDDL 1.0. For purposes
of this paper we do not consider either action costs or
rewards, so the objective is simply to find a plan that
has maximum probability of success.



Figure 2 and Algorithm 1 show a sketch of the top
level algorithm for Precautionary Planning. First, a de-
terministic planner is used to generate a seed plan that
reaches the goal with high probability of success. Next,
an analysis and repair cycle is performed to improve
the net probability of the plan. The analysis searches
for an outcome that is both sufficiently probable and
results in a dead end (the goal cannot be achieved from
this outcome). If possible, this outcome is repaired by
adding actions to the plan to either: 1) avoid the prob-
lematic outcome, 2) allow the outcome to be repaired,
or 3) improve overall probability of reaching the goal so
that the outcome becomes less important. The analysis
and repair cycle continues on the improved plan until
plan probability is sufficiently high, no more improve-
ment is possible, or a time limit is exceeded. At this
point, the next action in the plan is executed. If ex-
ecution results in an unplanned outcome, a new plan
must be generated to reach the goal from this unex-
pected state. Analysis and repair is then performed on
this new plan before execution of its first step. Alterna-
tively, if execution results in an expected outcome, the
precautionary planner can continue on with the remain-
der of the existing plan. However, even in this case, we
perform analysis and repair of the remainder of the plan
before executing another step. We do this because 1)
the probability of subsequent outcomes in the remain-
der of the plan may have changed (increased) due to
the outcome of the step just executed, and 2) the pre-
vious analysis and repair cycle may have been limited



Domain description
(define (domain treacherous-drive)



...
(:action get-tire
:precondition (at-start)
:effect (have-tire))



(:action get-passport
:precondition (at-start)
:effect (have-passport))



(:action drive-from-start
:precondition (at-start)
:effect (and (not (at-start))
(probabilistic 3/5 (at-end)



2/5 (and (flat-tire)
(along-route)))))



(:action replace-tire
:precondition (flat-tire)
:effect (not (flat-tire) (tire-replaced))



(:action drive-from-along-route
:precondition (and (along-route)



(tire-replaced))
:effect (and (not (along-route)) (at-end)))



(:action cross-border
:precondition (and (at-end)(have-passport))
:effect (border-crosssed))



)
Problem description
(define (problem drive-problem)



(:domain treacherous-drive)
(:init (at-start))
(:goal (border-crossed)))



Figure 1: A probabilistic domain and problem ex-
pressed in PPDDL1.0.



by time.
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Figure 2: Basic outline of Precautionary Planning
framework.



Seed Plan Generation
Though the domains we work with are probabilistic, our
framework uses a fast, deterministic planner to generate
the seed plan. This requires conversion of the proba-
bilistic domain to a deterministic domain. Since a seed
plan with high probability of success is desired, pref-
erence must be given to high probability outcomes in
the conversion. Algorithm 2 shows the method of con-
verting a domain and problem written in PPDDL1.0











Algorithm 1
planning/execution algorithm
Precautionary Planner(problem)



1: PDDL-problem ← Cnvrt-to-Determ(problem)
2: plan ← Determ-Planner(PDDL-problem)
3: repeat
4: Repair-Failures(plan, PDDL-problem)
5: cur-state ← Execute-Step(plan)
6: if unplanned outcome then
7: init-cond(PDDL-problem) ← cur-state
8: plan ← Determ-Planner(PDDL-problem)
9: end if



10: until plan is null



(Younes et al. 2005) to PDDL2.21 (Edelkamp & Hoff-
man 2004).



Algorithm 2
function Cnvrt-To-Determ(problem)



Part A: Convert domain
1: PDDL-domain ← determ parts of Do-



main(problem)
2: for all prob actions Ap in Domain(problem) do
3: total prob ← 0
4: for all prob outcomes i of A do
5: total prob ← total prob + pr(i)
6: Ad



i ← determ copy Ap with only outcome i
7: Set-Cost(Ad



i , -1 ∗ log(pr(i))
8: if i is conditional then
9: Add-Precond(Ai, condition of i)



10: end if
11: Add-Action(PDDL-domain, Ai)
12: end for
13: if total prob < 1 then
14: Ad



j ← determ copy Ap when no prob outcome
occurs



15: Set-Cost(Ad
j , -1 ∗ log(1 - total prob))



16: Add-Action(PDDL-domain, Aj)
17: end if
18: end for
Part B: Convert problem
1: PDDL-problem ← Problem(problem)
2: Set-Initial-Cost(PDDL-problem, 0)
3: Set-Metric(PDDL-problem, minimize cost)



To convert the domain, we use an approach similar
to that of Jiménez, Coles, & Smith (2006); each prob-
abilistic action is broken into several deterministic ac-
tions, one for each probabilistic outcome (loop starting
in part A, line 2). To force the deterministic planner
to find a high probability plan, the plan metric fea-
ture of PDDL2.2 is used. For each new action that is
created, the probability of its outcome is converted to



1PDDL2.2 is used because it introduces the concept of a
metric (objective function) for ranking plans.



an additive cost equal to the negative logarithm of the
probability (part A, lines 7, 15). More precisely, if A
is a probabilistic action with outcomes O1, . . . , Ok and
probabilities P1, . . . , Pk, we create deterministic actions
A1, . . . , Ak each having the same conditions as A, effects
of O1, . . . , Ok respectively, and costs Ci = − log Pi. The
problem is then converted by initializing cost to 0 and
setting the plan metric as minimize cost (part B, lines
2, 3). Figure 3 shows the converted form of the action
drive-from-start and the converted problem for the
domain and problem in Figure 1.



Converted action drive-from-start
(:action drive-from-start-1
:precondition (at-start)
:effect (and (not (at-start) (at-end)



(increase (cost) 0.222)))



(:action drive-from-start-2
:precondition (at-start)
:effect (and (not (at-start) (along-route)



(increase (cost) 0.397)))



Converted problem description
(define (problem drive-problem)



(:domain treacherous-drive)
(:init (at-start) (= (cost) 0))
(:goal (border-crossed))
(:metric minimize (cost)))



Figure 3: Parts of the probabilistic domain and problem
converted to PDDL2.2.



Recognizing Unrecoverable Outcomes
Once the seed plan is generated, actions that could
cause unrecoverable failure must be recognized. Given
an action in the plan, it must first be mapped back
to its counterpart in the probabilistic domain to find
other possible outcomes. A determination must then
be made as to whether any of the alternate outcomes
could cause unrecoverable failure. A simple way to test
for this is to change the initial conditions of the problem
to represent the state of the world when an alternate
outcome occurs and then call the deterministic planner.
If a plan cannot be found, the failure is unrecoverable.
If a plan does exist, it is probabilistic, like the seed plan,
and so must also be analyzed for unrecoverable failures.
This approach accurately locates dead ends, but incurs
overhead by calling the planner repeatedly for each al-
ternative outcome in the plan. As a result, the expense
of this approach gets out of hand as the number of un-
certain outcomes in the plan increases. A potentially
faster alternative is to construct a plan graph and use
it for reachability analysis. By propagating probabil-
ity estimates through the plan graph (Bryce & Smith
2006), we can estimate the probability of reaching the
goal after the alternate outcome occurs. The disadvan-
tage of this approach is that plan graph reachability is
optimistic and could lead us to believe that an outcome
is recoverable when it is not.











Alternatively, in some cases it may be possible to
do domain analysis and prove in advance that certain
action outcomes are reversible – that is, a sequence of
actions exists that can be executed to return the world
to the state before the action in question was executed.
In such cases, the outcome is recoverable, and it is not
be necessary to run the planner to determine this. Once
the world is returned to the previous state, the action
can be executed again. If the desired outcome occurs,
the plan can continue. Otherwise the reversal steps can
be repeated as long as the alternate outcome occurs.



Ultimately, we believe that a combination of these
three techniques will be required to efficiently assess
action outcomes. First, one should check an outcome
to see if it is reversible. if not, a plan graph could be
used to see if the outcome is unrecoverable or has low
probability of recovery. Finally one could invoke the
planner on high probability outcomes not identified as
either reversible or unrecoverable by the previous two
techniques. This limits the expense of the planner to
those outcomes that are relatively important and still
suspect.



Repairing Unrecoverable Outcomes



Once an action with an unrecoverable outcome is identi-
fied, we want to repair the plan so that the overall prob-
ability of success is improved. There are potentially
four different ways in which this can be accomplished:
1) avoid the problematic outcome through confronta-
tion, 2) allow the outcome to be repaired by adding
precautionary steps to the plan prior to the problematic
action, 3) improve overall probability of reaching the
goal by incorporating conformant actions, or 4) aban-
doning the plan and seeking another seed plan that is
more repairable. This section discusses these four op-
tion in detail.



Confrontation
Sometimes the probabilistic outcomes of an action
are contingent upon different conditions. For exam-
ple, in the travel problem it might be that for the
drive-from-start action, flat-tire can only occur
when the tires are old. Confrontation of this condition
would allow us to avoid flat-tire by always ensuring
we have new tires before beginning drive-from-start.
Let As be our action in the seed plan with unrecover-
able outcome Ou and let Cu be the condition for that
outcome. We want to modify the existing seed plan
to force achievement of the negation of this condition,
so that the bad outcome Ou can not occur. We can
trick a deterministic planner into doing this as shown
in Algorithm 3. We create a new version of this action
A′



s which has all the original preconditions and effects
of As (line 3) but also has the additional precondition
¬Cu (line 4) and a new unique effect (line 5). We force
A′



s into the plan by adding this unique effect to the goal
(line 6). We add A′



s to the domain (line 7) and solve the
planning problem again. If a new plan is found, and the



probability of this new plan is greater than that of the
seed plan, the new plan replaces the seed plan, avoiding
the unrecoverable outcome.2



Algorithm 3
function Confrontation-Repair(plan,
PDDL-problem)



1: As ← action in plan that can cause unrecoverable
failure



2: Cu ← condition under which unrecoverable out-
come of A occurs



3: A′
s ← copy of As



4: Add-Precondition(A′
s, Negate(Cu))



5: Add-Effect(A′
s, unique-effect)



6: Add-Goal(PDDL-problem, unique-effect)
7: Add-Action(PDDL-problem, A′



s)
8: plan ← Determ-Planner(PDDL-problem)



Precautionary Steps
Another way to resolve an unrecoverable outcome is to
insert precautionary actions into the plan that improve
the probability of recovery. In the example problem,
we can avoid unrecoverable failure when the tire goes
flat by including a precautionary step of get-tire at
the beginning of the plan. Recovery is then possible
by executing fix-tire and drive-from-along-route
when drive-from-start results in a flat tire.



As with confrontation, we can trick a deterministic
planner into inserting precautionary actions into a plan.
Algorithm 4 gives a sketch of the process. Let A be our
action with unrecoverable outcome Ou and let As and
Au be the deterministic versions of A corresponding to
the desired and unrecoverable outcomes of A. The ba-
sic idea is to force the deterministic planner to find a
plan that includes Au but does not destroy anything
that is needed to reach the goal when A has the desired
outcome Os. To facilitate this, the seed plan is divided
into three parts: the prefix (containing all actions pre-
ceding As plus the initial world state), As, and the suffix
(containing all actions following As plus the goal state).
We create a new deterministic action A′



u that includes
all the preconditions and effects of Au (line 2). We also
add a unique effect to A′



u that is then added to the goal
to force A′



u into the plan (line 3, 4). The suffix of the
seed plan Π is protected by identifying any conditions
necessary for the suffix that are fulfilled in the prefix



2There is a more efficient, but more complicated way
of doing confrontation that avoids having the planner re-
generate the plan suffix (those actions following As in the
plan). Doing this requires that we analyze the causal struc-
ture of the plan suffix to find the set of conditions Csuffix that
are satisfied by actions occurring in the plan prefix (those
actions preceding As in the plan). If Cs are the precon-
ditions of As we instead solve a new problem with goals
G′ = Cs ∪ ¬Cu ∪ Csuffix. If a plan is found, it serves as a
replacement for the prefix of the seed plan.











(lines 5-6). This requires analyzing the causal struc-
ture of the suffix to determine which actions in the seed
plan are used to satisfy the conditions in the suffix. All
such conditions are added as preconditions of A′



u, en-
suring that the original suffix can execute. Then, A′



u is
added to the domain (line 8). Figure 4 shows A′



u for
the example problem. Finally, the newly constructed
planning problem is passed to the deterministic plan-
ner (line 9). If a plan is returned, it replaces Π and the
suffix of Π is added to it as a branch (lines 10-12) for the
successful outcome Os of A. If a plan is not returned,
a truly unrecoverable outcome has been found.



Algorithm 4
function Precautionary-Repair(plan, PDDL-problem)



1: A ← action in plan that can cause unrecoverable
failure



2: A′
u ← copy of Au, the version of A with the unre-



coverable outcome
3: Add-Effect(A′



u, unique-effect)
4: Add-Goal(PDDL-problem, unique-effect)
5: for all preconditions pc in plansuffix supported by



planprefix do
6: Add-Precondition(A′



u, pc)
7: end for
8: Add-Action(PDDL-problem, A′



u)
9: new-plan ← Determ-Planner(PDDL-problem)



10: branch ← plansuffix



11: Add branch to new-plan after A′
u



12: plan ← new-plan



(:action drive-from-start-2-include
:precondition ((have-passport) (at-start))
:effect (and (not (at-start) (along-route)



(unique-effect-1)))



Figure 4: Action A′
u that is included in a plan to repair



the unrecoverable outcome of a flat tire. The condi-
tion have-passport must be added as a precondition
because it is needed by the suffix.



Figure 5 shows (a) the seed plan, (b) the new plan
that is generated to repair the problem, and (c) the
merged contingency plan for our example problem.



Conformant Solution
Sometimes it is possible to add steps to a plan that
reach the goal through different means and thereby in-
crease the overall probability of reaching the goal. In
our example, suppose that the real objective was to
deliver a document across the border. One way of in-
creasing the chance of success would be to send a copy of
the document in a separate vehicle. This is essentially a
conformant rather than a contingent means of increas-
ing the chance of success of a plan. As it turns out,
conformant plans can result naturally when we apply
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Figure 5: (a) Seed plan. (b) Repair plan. (c) Merging
of suffix of seed plan with repair plan.



Algorithm 4. This is the case when the deterministic
planner finds a plan to achieve the original goals, but
the action A′



u (which was forced to be in the plan) is
not on the critical path for any of those goals. In other
words, the only purpose of A′



u is to achieve the unique
effect that we added to the goal, and the resulting plan
would still achieve the original goals if A′



u were removed
from the plan. The reason this plan was not generated
initially is because on its own it has a lower probabil-
ity of success than the seed plan. However, inclusion
of both the high probability seed plan and lower prob-
ability plan increases the overall probability of success.
Since A′



u ensures the suffix of the seed plan can be ex-
ecuted, the two plans can be merged. More precisely,
if Π′ is the new plan, we can replace A′



u in Π′ with A
and add the suffix of the original seed plan to Π′, but
condition it on the successful outcome Os of A. This
is basically the same as the plan merging step for Pre-
cautionary Planning. There is, however, one additional
complication: some of the conformant planning steps
might interfere with steps in the suffix of the seed plan.
Thus the final step in the plan merging process is to
condition any such steps on having an outcome for A
other than Os. This process is similar to the condition-
ing process for threat resolution in POCL conditional
planning described in Peot & Smith (1992).



Truly Unrecoverable Outcomes
This work is based on the observation that many fail-
ures are recoverable when planned for ahead of time.
Though this is often the case, it is not always true. It
is possible that adding the restrictions of Algorithms 3
and 4 to the planning problem prevents the generation
of a plan. This, then, indicates a truly unrecoverable
outcome. However, it does not necessarily mean that
the problem is unsolvable. It may simply be that the
seed plan should be abandoned and replaced with a new
plan that has a lower probability of success on its own,
but can be repaired to raise the overall probability to
an acceptable level. To find the new plan, either the
domain would have to be modified to prevent regen-
eration of the seed plan (this could involve removal of
the action causing unrecoverable failure) or the deter-
ministic planner would need to generate a succession of
plans rather than a single plan. In either case, a new











seed plan should be considered. Of course it may ulti-
mately turn out that no other seed plan is any better,
and that the the original seed plan with unrecoverable
outcomes is the highest probability solution. As a re-
sult, this entire process should be considered as a search
through a space of probabilistic plans at various stages
of improvement.



Searching for Unrecoverable Outcomes
So far, we have assumed that, given a seed plan, all
action outcomes are considered for repair. For larger
problems this is generally not practical. Instead, we
need to focus the improvement process on those out-
comes that are likely to make the most difference in
improving plan probability. There are several possible
strategies for doing this, but we will focus here on a
progressive greedy approach. This approach scans the
plan starting at the beginning and progresses forward
in time. For each action A with an alternative (un-
planned) outcome O we consider the probability that
O will actually occur. This is the probability of the
outcome O given that A is executed, times the prob-
ability that A is actually executed (i.e. the execution
makes it to A without failure or without taking another
branch). Formally:



P (O) = P (O|A)P (A)



If this probability exceeds a given probability threshold
T then an attempt is made to repair the outcome.



In addition, it may be useful to place a horizon limit
on the search under the assumption that one does not
need to prepare too far in advance for many uncertain
outcomes. A more sophisticated alternative is to use
some sort of discount factor to discount actions further
in the future. This approach tends to focus the repair
effort on the most time critical and highest probability
outcomes on the assumption that later outcomes are
less likely and less pressing.



Discussion
Status
Although we have developed a preliminary implemen-
tation of the techniques described in this paper, our im-
plementation is far from complete. We initially chose
to use the LPG-TD planner of Gerevini, Saetti, & Se-
rina (2006) for our deterministic planner because it can
optimize plans based on a metric, which is important
for generating high probability seed plans and precau-
tionary repairs. Our implementation converts PPDDL
domains to PDDL domains as described in Algorithm
2. It then uses LPG-TD to generate a seed plan. A
progressive greedy scan of the seed plan is done to ex-
amine the alternative outcomes for actions in the seed
plan. An outcome is examined if the probability that
the outcome will occur exceeds a given threshold. In
this case, LPG-TD is called again to determine if an
alternate plan to the goal exists for this outcome. If a
plan is not found, then an unrecoverable outcome has



been found and Algorithm 4 is used to try to find a pre-
cautionary or conformant solution that avoids the dead
end. When LPG-TD returns a plan, this plan is used as
a basis for the repair. If the probability of reaching the
goal with this new plan is less than the threshold, that
plan is recursively scanned. A horizon is used to limit
the number of steps scanned in the plan and the number
of levels of recursion during the repair algorithm. Once
the plan has been analyzed up to the horizon, execution
begins. After each step has executed, the analysis step
is repeated, taking into account the new state of the
world.



There are a number of deficiencies in our implemen-
tation. First, it does not yet include the ability to do
confrontation as described in Algorithm 3, and we rec-
ognize that this is critical in some situations. Second,
we call LPG-DT in order to determine whether or not
each action outcome is unrecoverable. As we noted ear-
lier, this becomes expensive as the number of actions in
the plan with uncertain outcomes increases. We believe
that recognition of reversible outcomes and use of plan
graphs to recognize unrecoverable outcomes is essential
to making this process efficient and practical. Despite
these deficiencies, we have attempted some initial tests
on simple problems from the first two probabilistic plan-
ning competitions. In most of these domains, actions
are reversible, so run-time replanning alone is sufficient,
and precautionary planning provides no additional ben-
efit. In the few domains where unrecoverable outcomes
are possible, precautionary planning can help – we have
been able to achieve the goal in a larger percentage of
problems than is possible with only run-time replan-
ning. However, because of our reliance on LPG-DT to
examine each outcome, our current implementation is
slow. We are currently working on remedying these de-
ficiencies.



Related Work
As we mentioned in the introduction, this work is in-
spired by the somewhat surprising success of FF-rePlan
in the probabilistic tracks of the 2004 and 2006 Inter-
national Planning Competitions (Younes et al. 2005;
Bonet & Givan 2006). FF-rePlan plans optimistically,
considering only the most likely effect of each action,
then monitors execution and replans when failure oc-
curs. Because FF-rePlan considers only the most likely
outcome for each action, there may be many lower prob-
ability plans that it cannot find. Furthermore, FF-
rePlan makes no attempt to optimize – that is, it does
not consider action probabilities in its search for plans.
It may therefore settle for a low probability plan when
a higher probability plan is readily available.



Concurrent with our work, Jiménez, Coles, & Smith
(2006) also recognized that it was possible to trick a
deterministic planner like LPG into searching for un-
conditional plans of high probability by 1) including a
separate deterministic action for each possible proba-
bilistic action outcome, and 2) assigning a cost to each
such deterministic action equal to the negative loga-











rithm of the outcome probability. They have shown
that this alone results in better plans than those pro-
duced by FF-rePlan.



Our incremental improvement approach to Precau-
tionary Planning builds upon the Just in Case (JIC)
scheduling work described in (Drummond, Bresina, &
Swanson 1994) and the Incremental Contingency Plan-
ning (ICP) work described in (Dearden et al. 2003).
JIC scheduling starts by constructing an unconditional
seed schedule, then analyzes the schedule to determine
where it might fail. For the most probable failures,
it attempts to construct a new schedule (conditional
branch) to cover this failure. The process is anytime
in nature and incrementally improves the schedule as
long as time and computational resources permit. ICP
takes a similar approach to planning under uncertainty.
A seed plan is first constructed using a deterministic
planner. Monte Carlo simulation is then used to iden-
tify possible failure points. Heuristics are used to de-
cide which failure point to consider, and a deterministic
planner is used to construct a conditional branch for the
failure. Again, the process repeats as long as time and
computational resources permit. It is worth noting that
both of these approaches were developed to deal with
more difficult problems involving oversubscription and
goal utilities, and uncertainty in action duration and
resource usage. As a result, the heuristics and meth-
ods for choosing branch points and branch conditions
are considerably more complicated than what we have
considered here. One difference between Precaution-
ary Planning and the JIC and ICP work is that nei-
ther of those techniques were capable of inserting pre-
cautionary steps – i.e. modifying that portion of the
plan or schedule prior to the branch point. This turned
out to be a significant weakness in the application of
ICP to practical problems. However, the most impor-
tant distinction between Precautionary Planning and
previous incremental approaches is our combination of
incremental improvement with replanning. This com-
bination fundamentally changes the focus of the plan
improvement effort so as to concentrate on only those
outcomes that lead to dead ends. This makes a big dif-
ference in the heuristics and search strategy, and in the
robustness of the resulting system to uncertainty.



Finally, the CIRCA system (Musliner, Durfee, &
Shin 1993) also has some similarities with Precaution-
ary Planning. Basically, CIRCA is a real time control
system that attempts to look ahead and avoid any pos-
sibility of bad outcomes. In effect, it tries to prove that
the next action that it takes will not get it into trou-
ble somewhere in the future. While it will attempt to
achieve goals, this is secondary to avoiding bad out-
comes.



Future Work
Continuous Uncertainty A primary motivation for
the original work on Incremental Contingency Planning
(Bresina et al. 2002; Dearden et al. 2003) was the fact
that much of the uncertainty in practical domains in-



volves uncertainty in the duration and resource usage
of actions – in other words, uncertainty about contin-
uous quantities. For problems like this, uncertain ac-
tions do not have a finite set of discrete outcomes, so
traditional MDP approaches are not adequate without
first discretizing the uncertain outcomes. Although this
paper has been focused on traditional planning under
uncertainty where actions have discrete uncertain out-
comes, the general technique is aimed at a broader class
of problems involving uncertainty in continuous quan-
tities. As in the previous work on incremental contin-
gency planning, an initial seed plan would be generated
using the expected behavior of the actions. Given a seed
plan and an action with an uncertain continuous out-
come, the challenging problems are 1) to figure out the
range of outcomes that are likely to cause the current
seed plan to fail, and 2) determine whether the plan can
be repaired for this range of outcomes. In essence, we
want to find the subset of the range of outcomes that
are unrecoverable (or have low probability of recovery)
and apply the techniques of this paper to further re-
duce the range of those outcomes. In other words, for
continuous uncertainty the real objective is to reduce
the range and probability of unrecoverable outcomes,
rather than to completely eliminate them.



Oversubscription and Goal Values Another issue
that our framework does not currently address is that
of oversubscription and goal values. In our example we
had the simple goal of being across the border – there
was no value associated with this goal, and no costs
associated with actions. If the value of the goal were
low, and the cost of getting the spare tire were high, the
optimal plan might be to abandon the goal if a flat tire
occurs. Unfortunately, when actions have costs, and
goals have values, our simple approach of tricking a de-
terministic planner into finding good (high probability)
plans no longer works. The problem is that each action
outcome now has a cost, a probability of success, and
some expected benefit. The trouble is that 1) it is not
clear how to assign a meaningful benefit (distribute util-
ity) to individual actions, and 2) it is not clear how to
combine these quantities into a single “cost” that can
be used for optimization. In order to deal with costs
and utilities one could start with a more sophisticated
planner that is capable of dealing with goal utilities and
oversubscription problems. However, in this case it is
not clear how to take probability into account. One
could potentially penalize low probability outcomes by
adding a cost to each deterministic instance of the ac-
tion based on the negative logarithm of the outcome
probability. Using such an approach, a deterministic
oversubscription planner could be used to generate seed
plans.



Once a seed plan is generated, there is a second prob-
lem of deciding which outcomes to repair. In this case,
one is not just concerned with whether or not the goal
can be reached from an action outcome, but with how
much utility will be lost if the outcome occurs. Gener-











ally, more complex techniques such as those described
in Dearden et al. (2003) may be required in this case.



Conclusion
One can argue that the primary reason FF-rePlan did
so well in the probabilistic planning competitions is that
the domains and problems had very few dead-end out-
comes – that is, outcomes where it was no longer possi-
ble to reach the goal(s). Although there is much truth
to this observation, we believe there is still an important
lesson to be learned; many action outcomes can be dealt
with efficiently by run-time replanning. It is only those
outcomes that would lead to failure that a planner re-
ally needs to worry about ahead of time. Thus, we think
it is a mistake to consider either contingency planning
or replanning in isolation. Full contingency planning
(policy generation) is too difficult and too slow, and
replanning alone is not robust enough. Any system ca-
pable of dealing with significant problems will need a
combination of the two approaches – replanning to deal
with all the annoying but relatively harmless outcomes,
and contingency planning to deal with those outcomes
that would result in failure.



We have presented a framework for dealing with plan-
ning under uncertainty that interleaves planning and
execution. We assume a model where actions may
have probabilistic outcomes, the execution agent can
observe the state of the world after each probabilistic
action completes, and there is time for replanning af-
ter such observations are made. Under our framework,
contingency planning is done to prevent unrecoverable
failures, and replanning is done when recoverable fail-
ure occurs. This is different from both contingency
planning and replanning. In contingency planning, at-
tempts are made to prevent all failure, whereas we only
concern ourselves with unrecoverable failure. In replan-
ning, a dead end occurs when an attempt is made to
replan after an unrecoverable failure. Our planning
framework does contingency planning to avoid this. An-
other key to our framework is that we use a fast deter-
ministic planner for plan generation. We have devel-
oped algorithms for using a deterministic planner to 1)
generate plans that have a high probability of success
and 2) to insert precautionary actions and generate con-
tingency branches for unrecoverable action outcomes.
We have also described several heuristics for discover-
ing unrecoverable outcomes.



Acknowledgements



We would like to thank Alfonso Gerevini, Alessandro Saetti,
Ivan Serina, Paolo Toninelli for making an executable of
LPG-td available and for helpful correspondence. We would
also like to thank Minh Binh Do and J. Benton for mak-
ing the code of SAPA available and for quickly answering
questions related to this code. This work was supported
by the NASA Harriett Jenkins Predoctoral Fellowship Pro-
gram, and by the Automation for Operations project of the
NASA ETDP program.



References
Bonet, B., and Geffner, H. 2003. Labeled RTDP: Improv-
ing the convergence of real-time dynamic programming.
In 13th Int. Conf. on Automated Planning and Scheduling
(ICAPS-03), 12–21.



Bonet, B., and Givan, B. 2006. Results of probabilis-
tic track in the 5th International Planning Competition.
http://www.ldc.usb.ve/ bonet/ipc5/.



Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision theo-
retic planning: Structural assumptions and computational
leverage. JAIR 11:1–94.



Bresina, J. L.; Dearden, R.; Meuleau, N.; Ramakrishnan,
S.; Smith, D. E.; and Washington, R. 2002. Planning under
continuous time and resource uncertainty: A challenge for
AI. In 18th Conf. on Uncertainty in AI (UAI-02), 77–84.



Bryce, D., and Smith, D. 2006. Using interaction to
compute better probability estimates in plan graphs. In
ICAPS-06 Workshop on Planning Under Uncertainty and
Execution Control for Autonomous Systems.



Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.;
and Washington, R. 2002. Contingency planning for plan-
etary rovers. In 3rd Int. NASA Workshop on Planning and
Scheduling for Space.



Dearden, R.; Meuleau, N.; Ramakrishnan, S.; Smith, D.;
and Washington, R. 2003. Incremental contingency plan-
ning. In ICAPS-03 Workshop on Planning under Uncer-
tainty and Incomplete Information.



Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
In-Case scheduling. In 12th Nat. Conf. on AI (AAAI-94),
1098–1104.



Edelkamp, S., and Hoffman, J. 2004. PDDL2.2: The lan-
guage for the classical part of the 4th International Plan-
ning Competition. Technical Report 195, Computer Sci-
ence Department, U. Freiburg.



Gerevini, A.; Saetti, A.; and Serina, I. 2006. An approach
to temporal planning and scheduling in domains with pre-
dictable exogenous events. JAIR 25:187–231.



Hansen, E. A., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2):35–62.
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Abstract



Modern planning and scheduling systems are capable of
dealing with the size and complexity of many real world
problems. However, mission critical planning is still
often done by humans. Even if only a couple of plans
are produced (“Master Plan” and “Plan B”), human
experts evaluate multiple alternatives, think of con-
tingencies, consider the likelihood of failure of various
steps, and account for schedule slack and plan flexibil-
ity. Computers can evaluate thousands of alternative
scenarios, but the solutions they ultimately produce are
often not convincing enough for expert decision makers
to trust human lives or mission critical operations to
computer decisions. Further, automated systems often
require significant changes in the way people operate,
which in high-stakes high-pressure environments leads
to rejection of the system by the users.



In this paper we describe the decision support func-
tionality of the Coordinated Multi-source Maintenance
on Demand (CMMD) system. CMMD is designed to
support the complete life cycle of mission plans for hu-
man space exploration, starting with initial long-term
planning and ending with day-by-day execution of a
detailed schedule. The goal of CMMD is not to re-
place human experts, but to assist them. To do so,
CMMD explains reasons for commitments it makes, al-
lows the user to interactively explore alternatives, guide
the search toward more desirable solutions, and to run
various queries (e.g., what courses of action have not
yet been explored with respect to some goal?). We
claim that giving users insight into workings of the
system and gradually enhancing existing processes is
crucial for gaining user confidence in produced plans
and ultimately for adoption of the system.



Introduction
Modern automated planning and scheduling algorithms
can support very expressive domain models, and of-
ten scale sufficiently for real-world applications. Most
such algorithms target automated systems, such as au-
tonomous vehicles and other equipment. However, pro-
ducing a good plan is not enough for humans to be able
to approve the plan. Users must be able to see that a
plan is valid and reasonably efficient. Even providing
post hoc explanations after the plan is produced is not
helpful because the plan is too complex to understand,



and any human concerns are too late to be addressed.
It is also hard to formalize human intuition that might
be necessary to produce better plans. What is needed is
simple, interactive understanding and control. Humans
must be able to explore alternatives within the plan
expansion process itself, assess them, run various diag-
nostic queries, and guide the system to more desirable
solutions without necessarily codifying plan evaluation
functions.



This paper describes our implementation of those ca-
pabilities in the Coordinated Multi-source Maintenance
of Demand (CMMD) system – a multi-agent decision
support tool for planning and execution of missions for
human space exploration, such as Shuttle flights, In-
ternational Space Station (ISS) increments, and future
lunar missions. Instead of replacing human planners,
CMMD assists them by (i) enforcing previously speci-
fied safety rules and standard procedures, (ii) showing
alternative actions, resource choices, and scheduling op-
tions, and (iii) allowing various diagnostic queries on
the schedule. The system can be tasked to compute a
solution automatically, but the user can intervene at
any point to request alternative solutions and/or to
guide the search process herself. Thus the user can
decide how much control of the planning process she
needs and how much she is willing to trust the auto-
mated system.



The rest of the paper is organized as follows. We first
describe the application domain to motivate examples,
followed by a description of the CMMD system archi-
tecture and its unique decision support capabilities. We
close by discussing related research and future work.



Human space exploration
The application domain of the CMMD effort is centered
around NASA’s manned space operations led by the
Johnson Space Center (JSC) in Houston, Texas. The
Center is responsible for planning and day-to-day exe-
cution of the Space Shuttle and the ISS programs. As
the ISS’ construction nears completion, JSC’s manned
spacecraft center will evolve to play a major role in the
follow-on Exploration Systems program, now in its for-
mulative stages, which has the mission of constructing
a lunar outpost and ultimately establishing a human











presence on Mars, and beyond.
Manned space operations build upon established and



tested rules and procedures. However, the problem
is extremely dynamic compared to many planning do-
mains due to the frequent need to accommodate new
equipment and one-of-a-kind activities, and addition of
new procedures. Sometimes, after careful consideration
of alternatives, certain existing rules and constraints
may be waved.



In planning ISS operations, the largest unit of time
ordinarily dealt with is an increment, which is the time
period that a specific crew lives aboard the station (cur-
rently about 6 months). Increment planning begins
12 to 18 months before launch, initially documenting
high-level issues such as crew rotation and training, sta-
tion construction phases, and required logistics supply
flights. Over time, at prescribed intervals, the plan is
methodically refined with more detailed tactical ver-
sions, each defined over increasingly shorter planning
horizons, finally resulting in daily, executable schedules
specified to the level of individual actions, such as meals
for astronauts. The refinement process is not strictly
top down, as high level goals may be added, dropped,
or modified as more detailed plans show what is feasi-
ble.



A team of experts, called a discipline, coordinates
each aspect of the increment – from equipment to med-
ical science. Each discipline has its own set of ground
rules and constraints describing standard procedures
and safety restrictions, plus resource requirements that
may conflict with other disciplines (e.g., on astronaut’s
time). The Lead Operations Planner/Flight Director
has final authority for resolving any conflicts for the
good of the mission, thus requiring disciplines to have a
firm grasp on available options and their implications.



This concept of operations has a proven track record,
and with JSC’s successful legacy, it will likely be
adapted incrementally in future Explorations Systems.
Thus any new planning technology must be able to inte-
grate with the existing tools and organizational struc-
tures. Due to the dynamic nature of the domain, it
is very unlikely that an automated system will replace
human experts. Rather, what’s needed is an interac-
tive planning tool that can switch between manual and
automated modes and assist human users by (i) offload-
ing computation intensive tasks, (ii) allowing diagnos-
tic queries to reveal relevant information, (iii) providing
intelligent rationale behind commitments, and (iv) fa-
cilitating exploration of alternatives.



The system presently used for planning of ISS mis-
sions, CPS (Saint 2002), provides a scheduler and al-
lows multiple users to submit specific plan modification
requests. However, it does not allow users to actively
participate in the planning process. The CMMD sys-
tem was designed to address these requirements.



CMMD architecture
To enable future space exploration operations, any
planning and execution system should support:



Figure 1: Architecture of CMMD Agent



• An extensible encoding of domain knowledge,
• Multiple time granularities and concern windows



(e.g., detailed weekly plan and high-level plan for the
next month in the same system),



• Multiple disciplines/roles,
• Distributed, asynchronous operations (consider com-



munications delays to Mars),
• A user-centric approach to the planning process,
• A means of performing diagnostic queries, and
• Multiple ongoing what-iffing sessions.



To satisfy these requirements, the CMMD system is
designed as a collection of agents communicating via a
virtually centralized Backbone. The agents can be used
by various disciplines (human users) or as bridges to ex-
ternal data sources, such as equipment health monitors.
The Backbone is responsible for propagating informa-
tion between the agents, for enforcing visibility restric-
tions and preferences, and for the transaction-safe per-
sistence of data. In this paper we will focus on the user
interactions with a single agent and will not discuss the
distributed aspects of the CMMD system.



Agent modules
The architecture of a CMMD agent is shown in Fig-
ure 1. The Knowledge Base (KB) contains a working
copy of the plan and performs constraint propagation.
The data representation for plans is described in the
subsequent section. Other modules of the agent can
read and modify the data in the KB. The Backbone
Stub (BBS) is responsible for communication with the
Backbone, including propagation of data updates to
and from the agent. The Rules Engine (RE) enforces
applicable rules, the Query Engine (QE) locates user-
specified subsets of a potentially overwhelming solution
space, and the User Interface (UI) module is responsible
for communication with the user.



As a plan evolves, changes can come from 3 sources:



1. New information can be added by the local user (via
the UI module) or by external users or data sources
(as propagated via the Backbone and BBS),



2. Implied changes can be enforced on already available
data. This includes constraint propagation and rule
application, and











3. The Solver module can perform search for a solution
in the space defined by rules and constraints.



These modifications are applicable to a single plan
instance. In order to enable exploration of alternative
scenarios, CMMD supports simultaneous existence of
multiple contexts (described later). The Context Man-
ager (CM) manages the life cycle of these contexts as
well as their communication with the Solver, RE, and
KB. In addition to decisions made by CM, the user can
explicitly initiate context operations for what-iffing.



Data model
The CMMD data model includes several first class en-
tities: variables, constraints, conditions, resources, to-
kens, rules, options, and contexts. Resources and to-
kens also have types. Variables and constraints in
CMMD form a constraint network. Both real-valued
variables (intervals) and discrete variables (sets) are al-
lowed. Conditions are similar to constraints, but condi-
tion propagation affects only the value of the condition
flag and does not change domains of arguments.



Tokens are used to represent activities in the plan, as
well as certain states of resources as a function of time
(e.g. see the later CMG functioning scenario). Where
it aids clarity, we differentiate between tasks, which are
tokens denoting a collection of sub-activities, actions
or primitive activities executed by individual resources,
and state tokens over resource timelines. In addition to
the usual start, end, duration, and resource variables,
CMMD tokens may also have one achievement and zero
or more safety variables associated with them. These
variables take discrete option values, where each option
represents a possible course of action for achieving a
goal or for satisfying a safety constraint. Individual
options are created and initialized by the Rule Engine
as described below.



Suppose, an EVA task (extra-vehicular activity, or
space walk) has just been added to the plan. This task
is represented in the plan by a token. Initially, the do-
mains of the start and end variables of this token are
set to a wide window during which the activity should
occur (e.g., a week). The initial domain of the resource
variable for the EVA token will contain resource time-
lines corresponding to all astronauts present on the sta-
tion and capable of performing the EVA. Suppose the
standard operating procedures contain a safety rule re-
quiring that the airlock be checked at most one day
before the EVA. A safety variable will be created by
the RE and attached to the EVA token to enforce this
requirement. There is also a standard procedure defin-
ing that an EVA comprises the following sequence of
actions: don suit, egress, work, ingress, doff suit. For
simplicity, we omit resource constraints and some of the
activities here and drop conditions. In this example, an
option representing the proper sequence of these sub-
activities will be bound to the EVA token’s achievement
variable. In some cases, there may be multiple legal
procedures for the same high-level activity. In such sit-



safety rule id:"10001" {
metadata(key:"Name", "No exercise after a meal)



// Bindings and pre-conditions



trigger: meal Meal @ Person



pattern:



ex Exercise @ Person {
should Greater(ex.start, meal.start),



could Greater(meal.end, ex.start, -3h),



should SetInclusion(meal.timeline, ex.timeline)



}
conditions: = {should True()} // Always applies where binds



// Effects



tokens: {} // no new tokens added



constraints: {TemporalArc(ex.start, meal.end, [90min, inf])}
}



Figure 2: Example rule



uations, the initial domain of the achievement variable
may contain several, alternative options.



The plan domain representation in CMMD is rule
based and similar to the concept of hierarchical task
networks (HTN) (Erol, Hendler, & Nau 1994). CMMD
rules come in two flavors: achievement and safety.
Achievement rules correspond to traditional HTN de-
compositions and specify a possible way to achieve a
goal. Safety rules prescribe additional, necessary con-
ditions. In NASA terms, achievement rules correspond
to standard procedures and safety rules to safety con-
straints or flight rules.1 Each rule has a trigger token, a
pattern possibly binding more tokens, a set of applica-
bility conditions, and a partial network of newly created
and/or reused tokens and constraints constituting a re-
finement to the constraint store. Figure 2 illustrates an
example rule that declares one must wait at least 90
minutes after a meal before exercising. The trigger of
this rule says the rule needs to be applied to every token
of type Meal. The pattern says that all exercise tokens
that can start within 3 hours after the meal need to
be checked. There are no further conditions. For each
such exercise token, a constraint is added forcing the
minimum gap between the meal and the exercise. By
adding the window condition in the specification of the
pattern, the rule prevents creating constraints between
every pair of meal and exercise tokens.



The Rule Engine expands applicable rules into indi-
vidual options, which constitute the domains of safety
and achievement variables of appropriate tokens. All
possible ways to perform a given task are captured as
options in the achievement variable of the correspond-
ing token. Each applicable safety restriction is captured
as a separate safety variable of the trigger token, and
all ways to satisfy this restriction are collected as op-
tions in the domain of this variable. Safety variables
also have conditions. For example, if in our above ex-
ample the exercise token is pushed more than 3 hours
away from the meal, the corresponding safety variable
becomes disabled.



Figure 3 shows the graphic conventions we use in this
paper. The placement of the variable circle on the token
rectangle graphically distinguishes between different to-



1Domain description in CMMD is intentionally kept close
to existing nomenclature in order to facilitate adoption.











ken variables (start, end, achievement, etc). The set of
safety variables created for a given token is shown in a
dashed box connected to the token.



Figure 3: Graphic conventions used in this paper



Maintaining safety and achievement variables in the
same way as temporal and resource variables levels the
playing field for search algorithms: the solver is free
to make decisions in any order, thus fully interleaving
action choice (planning) and resource/time assignment
(scheduling). When the domain of an achievement or
safety variable becomes empty (meaning there is no
way to achieve the goal or satisfy the safety require-
ments given other constraints), the constraint network
becomes infeasible, thus inducing backtracking.



The last major concept of the CMMD data model is
the context. CMMD contexts provide an abstraction for
encapsulating speculative computations during search.
Our implementation of contexts is functionally equiva-
lent to that of O-Plan (Tate & Dalton 2003). The sys-
tem actively maintains multiple contexts and exposes
them to the end user, thus providing a mixed-initiative
what-iffing capability. Due to the focus on explanations
and what-iffing, the CMMD agent also maintains rea-
sons to exist for various entities. Note that, since tokens
may be reused by multiple rules, reasons to exist are not
always unique. For example, a check airlock task may
be required both to satisfy EVA safety requirements
and as part of scheduled maintenance. Removing ei-
ther reason for the task will not lead to removal of the
check airlock task from the plan.



Suppose, ContextA is the current context. A new
EVA task is added in ContextA and applicable rules are
evaluated. Now suppose in ContextA there already ex-
ists a token of type check airlock that may be sched-
uled close enough to the EVA to be reused. Alterna-
tively, a new check airlock action may be created.
Given the available information, no decision whether to
reuse the existing check airlock token can be made,
so the Rule Engine creates two options (see Figure 4).
Only one standard procedure exists for EVAs, produc-
ing one option for the achievement variable.



Figure 4: Options created for eva 1



Upon a user request, or due to a decision made by
the search algorithm, a new context is derived from



ContextA. In this new context, ContextB, the domain
of the safety variable for token eva 1 is reduced to
a singleton value Option1. Propagation of this deci-
sion causes activation of the option, which in turn re-
sults in creation of a new temporal constraint between
check airlock 1 and eva 1 (Figure 5). The dashed
line in the figure shows the reason to exist.



Figure 5: Reuse of existing check airlock 1 token



Figure 6: Creation of new check airlock token



To explore the other alternative, ContextC is derived
from ContextA. Thus, ContextB and ContextC are sib-
ling alternatives. In ContextC, the value of the safety
variable for token eva 1 is set to Option2. As the
result, a new token check airlock 2 is created and
constrained to precede eva 1. Note that in this con-
text check airlock 1 has no ordering constraints with
eva 1 (Figure 6).



Token check airlock 1 was most probably added to
the plan to satisfy a safety constraint of some other
activity, such as docking of a transport spacecraft or
scheduled maintenance, and therefore has temporal and
resource constraints to some other tokens in the plan.
Although ContextB, which reuses this token, has fewer
actions, it has less flexibility, because it indirectly forces
constraints between the EVA task and the original task
related to the check airlock 1 token. One or both of
ContextB and ContextC may turn out to be infeasible
due to temporal or resource constraints. Even if both
are feasible, however, they likely have different down-
stream effects on the plan at large. Thus, it may be
beneficial to explore the consequences of both courses
of action.



Decision support functionality



Context operations
The typical user interaction with a single CMMD agent
proceeds as follows. The user loads an existing plan or
creates a new, empty plan. This plan forms the root
context, which defines available resources and high-level
goals. The user can then perform operations on the
context tree or within any leaf-level context.











Figure 7: Part of an astronaut timeline in the 5-week plan after rules are enforced. The popup shows a resistive
exercise device (RED) action. The action has been added to the schedule as part of the normal daily wake-time
activities (achievement rule a1004) for every astronaut on board (safety rule s1001). The exercise task also triggered
a safety rule s1020, which caused reservation of the RED machine for the duration of the exercise.



As mentioned earlier, contexts represent alternative
solution paths (either partial plans or point solutions).
A context can be branched (spawn a child) or deleted.
Changes from a child context can be promoted to its
parent, thus replacing the contents of the parent.



At any time there is a single context chosen as the
current context. The user can modify the state of the
current context by adding tokens and constraints and
by manually reducing domains of variables. The user
can also invoke various algorithms on the current con-
text, e.g. request the system to automatically prune
the domains of variables through propagation, to en-
force rules or to search for a solution. Alternatively, the
user can ask the Context Manager (CM) to automat-
ically derive a solution by interleaving rule firing and
search. This operation produces a context tree, which
includes a solution compliant with all known rules and
constraints, plus a tree of unexplored alternatives. The
CM loop enforces that generated sibling contexts are
unique by adding special no-good constraints.



Explanations and what-iffing



Consider the following scenario. JSC wants to plan for
a 5-week period on the ISS involving two unmanned
cargo shipments, a Shuttle mission, repair of two major
sub-systems on the exterior of the station, and a solar
experiment that must take place at a specified date and
time. The initial plan contains only the high-level tasks,
such as dock shuttle and run solar experiment.



The user can let the system run the CM loop until
a solution is found. Alternatively, she may decide to
take a more active part in the search and exploration



of alternatives. In this latter case, the next logical step
is to instruct the system to apply all relevant rules. As
the result, required actions, such as sleep and meals for
the crew and airlock operations required for docking,
are enforced and all viable ways to perform tasks are
collected (Figure 7).



At this stage, the user can use CMMD’s interactive
features to explore the set of enforced safety constraints
(and their effect on temporal windows and possible re-
source assignments) and applicable procedures. In sit-
uations where there is only one way to achieve a goal
or satisfy a safety constraint, it will be enforced im-
mediately, and required actions and constraints will be
added to the plan. However, the Rule Engine does not
make a choice when multiple options are available.



Suppose, a safety rule for solar experiments requires
the station to be properly positioned before the exper-
iment starts. This safety rule fires immediately, and
a turn task is added to the plan. This is an abstract
task, hence it cannot be directly performed. Instead,
some procedure should be followed to achieve the de-
sired outcome. Until a particular procedure is chosen,
it is impossible to say how long turning will take or
when it should start. All that is known is the turn goal
should be satisfied before the solar experiment starts.
There are two possible ways to turn the station: using
Control Moment Gyroscope (CMG) or using thrusters.
If both options seem viable, the Rule Engine does not
make a choice about which option to use – this is the
job of the search algorithm or the user.



If we let the search algorithm make the choice, it will
go with the first viable alternative – use the working











CMG to turn the station. This option would succeed if
the CMG is functioning at the time of the turn, which
depends on the CMG being repaired before, which in
turn depends on the robotic arm being repaired, which
depends on the Shuttle arriving in time with the spare
parts. The user can obtain all these causal dependencies
using the CMMD user interface.



Suppose the user wants to explore the situation when
the CMG repairs are unsuccessful. One way to model
this is to declare that the CMG is not functioning. The
user creates a branch of the current context and by
adding a new constraint, limits the duration of the state
token functioning on the CMG resource timeline.



This modification, when propagated, renders the use
of CMG for turning the station infeasible. Only one
option is left – to use the thrusters – and the next time
rules are enforced necessary tasks and constraints be-
tween them are added to the system. The user can then
compare this new plan with the plan that relied on hav-
ing a functioning CMG and decide whether committing
to the more conservative solution is a good idea.



Exploring alternatives
In the earlier example, the user created new contexts to
explore alternative ways to turn the station. When the
Context Manager runs in autonomous mode, interleav-
ing rule enforcement and making choices, it also creates
multiple context branches. In particular, the CM pe-
riodically creates checkpoints by adding two branches
of the current context: the working branch where the
choices are made and an alternative branch where the
same choices form a nogood. During an automated
search, the CM can use the alternative branches for
backtracking. Even if the autonomous loop finds a solu-
tion, the user can use the preserved alternative branches
of the context tree to explore other alternatives.



For example, suppose instead of manually exploring
scenarios with a working or broken CMG the user in-
structs the CMMD agent to find a point solution, i.e. a
total assignment for all discrete and numeric variables.
If the solver selects using the CMG for turning the sta-
tion, this would lead it to a valid solution, so the solver
will not automatically explore other alternatives. How-
ever, after the search finishes, the context tree contains
an unexplored context with “use CMG to turn the sta-
tion” listed as a no-good. The user can then instruct
the CMMD agent to find a solution for this context.



The CM implements several strategies for branching
and interleaving calls to the Solver and the RE. In addi-
tion, the user can explicitly create CM scripts by spec-
ifying the number of steps or termination conditions
for each invocation of the modules. For example, such
a script can specify that the Solver should first assign
singleton values to all achievement and safety variables
one variable at a time, and the RE should apply all
relevant rules after each such assignment. After that,
the Solver should make decisions about 10 variables at
a time. Note that scheduling decisions can make new
safety rules applicable.



The number of contexts produced by autonomous
CM mode can be very large. The scripting feature can
also be used for navigating the context tree. For ex-
ample, the user can search for all contexts where the
achievement variable of the turn task is first bound to
a singleton, or for contexts where the use of CMG is
removed from the list of options for this variable, or for
contexts where the arrival time of a cargo ship is limited
to a window of at most 5 days. The user might then
desire to inspect said contexts separately or to display
them side by side for comparison.



Related work
In this paper we discussed interactive features of
CMMD: providing explanations, exploring alternatives,
and controlling the search process. We review related
work with respect to these features.



The ability to discover reasons behind system’s
choices can be used to debug constraint based reason-
ing engines (Daley et al. 2005). Beyond debugging,
our focus is the integration of a planning tool into ex-
isting human processes. We seek to address the adop-
tion hurdle problem, by a) slowly gaining users’ trust
via on-demand decision rationales and b) allowing end-
users to refine the correct behavior of the system by
incrementally building up and maintaining the declara-
tive, corporate knowledge base that drives the decision
support process itself.



(Smith et al. 2004) generate explanations for incon-
sistencies in simple temporal networks (STN) that sug-
gest a possible relaxation of constraints, which make the
STN feasible. In (Bresina & Morris 2006), explanations
pinpoint inconsistent constraints added automatically
by the search engine to encode arbitrary ordering deci-
sions in the STN for any activities that are defined as
disjoint. CMMD’s solver component has a similar abil-
ity to discover conflict sets in inconsistent constraint
networks; we call these violations. By contrast, our ex-
planations describe why the problem was formulated as
it is and why decisions were made.



The second discussed feature is the ability to explore
alternatives. The Barrel Allocator system described in
(Kramer & Smith 2002; Becker & Smith 2000) provides
mixed-initiative “what-if” capabilities for exploring so-
lution spaces in the domain of airlift transport oper-
ations. The planning aspects of this work, however,
are limited to potential optimizations of resource us-
age by combining unrelated transport missions that are
nearby in space and time.2 In contrast, since CMMD
allows end-users to think in terms of high-level goals,
and there are frequently multiple, functionally equiva-
lent operational plans that will accomplish individual
goals, CMMD handles a great deal of reasoning about
the planning aspects of scheduling problems. Finally,
their system implements what-if exploration via lin-



2The challenge here is similar to the inefficiencies of re-
turning to one’s home base with an empty trailer in the
over-the-road trucking domain.











ear undo/redo operations, rather than the more general
branching mechanism of our contexts.



Another mixed-initiative, constraint-based schedul-
ing application is NASA’s MAPGEN, which derives
daily activity plans for the Mars Exploration Rovers.
This system does interleave planning operators into
its scheduling process to some extent, but according
to (Bresina et al. 2005) abstract tasks generally have
static expansions. Context-dependent alternatives over
suitable planning operators were rare and typically
added manually. Nor does MAPGEN appear to sup-
port multiple, simultaneous what-if branches.



We discuss search control in the next section.



Discussion and future work



Real-world deployment of planning/scheduling systems
requires gaining user trust and integrating new systems
with existing processes. The user should be able to
switch from the preexisting approach (manual or based
on another product) gradually, at her own pace.



The CMMD project aims to create a plan-
ner/scheduler to assist a human expert in dynamic,
mission critical domains such as space exploration. To
achieve this goal, CMMD provides user interface func-
tions for obtaining reasons for the system’s decisions
and allows the user to interactively explore alternative
options and to guide the system toward a more desir-
able solution. In CMMD, we don’t seek to build an
automated system that necessarily knows more about
the problem domain than an expert. Rather, we expect
it to primarily assist its human masters, who will “only
truly know what they want, when they can see what
they could get”.



Complex domains such as space exploration are sim-
ply too rich to be correctly and completely modeled.
Active involvement and frequent feedback from expert
users offer the only workable solution for addressing this
formidable issue. To achieve the necessary flexibility,
CMMD relies on extensible libraries of domain rules
and procedures layered upon efficient, domain-agnostic,
deductive inference procedures. The initial implemen-
tation of our rulebase language is arguably too unwieldy
for average subject matter experts. In follow-on efforts,
we expect to refine the syntax and semantics of the
language. Additionally, it is likely that providing sim-
plified wrappers (at the expense of expressivity) and/or
graphical languages for the generalized rules facility is
beneficial for common use cases.



To facilitate adoption, an intelligent system should
provide continuous spectrum of control, from almost
fully manual to fully autonomous. Even when oper-
ating in fully autonomous mode, the system’s ability
to elucidate reasons for its commitments (or backtrack-
inducing failures) is important for gaining user accep-
tance (in the case of correct answers) and for identifying
limitations in the system’s knowledge of the problem
domain (for incorrect and sub-optimal answers, in the
face of a previously unseen situation). Integration with



a simulation environment for evaluation of plan sensi-
tivity could also help further increase user confidence.



In domains where multiple solutions are possible, it
is useful to give the user interactive control over the
search process. The interactive nature of CMMD al-
lows incremental exploration and the opportunity to
redefine preferences on the fly. We believe that any
planner, which must cope with evolving problem do-
mains, should also support run-time configurable meta-
reasoning heuristics. The CM scripting feature already
allows control over such heuristics, but there is room
for extensions. (Myers & Morley 2003) offer some re-
lated perspectives on how quite powerful facilities for
user-defined guidance might be implemented. Effective
libraries of such meta-control rules would also facilitate
the inter-agent negotiations of a distributed problem
solving system such as CMMD.



CMMD’s interactive explanation, exploration, and
control features aim to increase user confidence in pro-
duced plans and thus to facilitate the system’s adop-
tion. CMMD’s architecture provides a good base for
the extensions outlined above.
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Abstract 



In many planning and scheduling applications, the 
challenge for human planners is not so much to find a 
solution to a problem, but rather to explore a range of 
options and understand the tradeoffs inherent to them.  
Effective search through complex solution spaces requires 
technology that can help a human decision maker 
understand the key aspects of candidate solutions.  This 
paper presents an approach to summarizing temporal plans 
that focuses on identifying noteworthy temporal features. 
These techniques look for regularities or exceptional 
temporal elements, drawing on a modest domain theory to 
drive the search process. An evaluation of the method on a 
suite of MER mission plans illustrates the potential of the 
approach. 



Introduction 
 In many planning and scheduling applications, the 
challenge is not so much to find a solution to a problem, 
but rather to explore a range of options and understand the 
tradeoffs inherent to them (Bresina et al. 2005; Myers & 
Lee 1999; Tate et al. 1998).  Automated planning and 
scheduling techniques can be useful for these applications, 
but work to date in the AI community has focused 
primarily on the synthesis problem. Here, we consider 
providing automated support to assist with the exploration 
and understanding of the solution space in the form of 
tools to aid in summarizing temporal plans.   
 Our summarization techniques are domain independent 
and apply to a broad range of temporal plans. In this paper, 
however, we focus on plans generated using the MAPGEN 
mixed-initiative planning tool (Bresina et al. 2005) to 
support science planning for the Mars Exploration Robot 
(MER) mission. A MER plan consists of a set of activities 
to be performed by a rover in support of one or more 
science objectives.  Typically, MER plans are created for a 
single Martian day (called a sol); however, science 
requirements can dictate the need for multi-sol plans.  
 Many potential plans are possible for a given set of 
science objectives; the challenge for planning in the MER 
domain is to identify actions that will best satisfy current 
science objectives and engineering constraints for a given 
sol.  Some preferences are explicitly represented in the 
MAPGEN domain model; others are difficult to formalize 
and reside solely in the minds of the human planners.  
Ideally, a human planner would explore a range of options 
before committing to a particular solution.  Because of 
time constraints, however, MER planners typically focus 
on an intended solution early on and have little opportunity 



to explore options.  The work in this paper is motivated by 
the objective of making it easier for MER personnel to 
explore a broader range of solution options.  
 Our work on summarization of temporal plans focuses 
on techniques for identifying noteworthy temporal 
features. These techniques look for regularities or 
exceptional temporal elements in a plan, drawing on a 
modest domain theory to drive the search process.   The 
techniques are intended to complement the plan 
summarization techniques described in (Myers 2006), 
which focus on structural aspects of a plan such as the 
tasks being performed, the strategies used to select them, 
and how resources are allocated.  Furthermore, they are 
intended to augment rather than replace plan visualization 
capabilities, such as MAPGEN’s timeline view of 
activities and resource levels. 
 We developed an implementation of our temporal 
summarization framework, called SITP (Summarization of 
Interesting Temporal Properties), and evaluated the 
framework on a suite of test plans from the MER mission. 
We believe that this evaluation shows that the 
summarization techniques can be helpful in increasing user 
understandability of complex temporal plans.  
 As with our prior work on plan summarization, domain-
specific tools could be developed that provide more 
discriminating summarization capabilities. However, we 
feel that our domain-independent approach can provide 
significant value, particularly in the initial design stages of 
formulating a plan, when the user seeks to understand the 
high-level tradeoffs among alternative candidate solutions. 
In particular, our approach would be helpful to a human 
planner who wants a better understanding of the range of 
options available within a large, complex solution space. If 
desired, specialized evaluation tools could be applied to 
perform more expensive and time-consuming quantitative 
analyses to assess promising plans in more detail.  
 Our techniques can be applied to any plan represented in 
a machine-readable form, as they examine only the plan 
structure rather than the process by which the plan was 
generated. In particular, the plans could be authored 
manually, generated by automated planning tools, or 
developed within a mixed-initiative planning environment 
such as MAPGEN or PASSAT (Myers et al. 2002).  
 We begin by presenting a set of candidate relations for 
use in summarizing temporal aspects of plans. Next, we 
present a collection of methods to extract relevant relations 
from MER mission plans, followed by a summary of 
results in applying those methods to a test suite of MER 
plans.  We close with a discussion of key properties of the 
approach, and a comparison to related work.  











 



 



Temporal Relations 
We adopt a model of plans similar to that employed in the 
MAPGEN system. More specifically, a plan consists of the 
following elements: 



 a collection of scheduled tasks, each represented in 
terms of a task type, parameters, start time, 
duration, and a unique identifier  



 temporal constraints over both task durations, and 
start and end times for an individual task or pair of 
tasks 



 temporal preferences represented as weights on 
temporal constraints 



 
 In addition to elements of the plan, we make use of the 
notion of events, which correspond to temporal landmarks 
of various types. For the MAPGEN domain, for example, 
significant temporal events include the start and end times 
for a plan, as well as Martian sunrise and sunset.  
 Based on our plan model, we define a space of temporal 
relations that may be of interest when trying to understand 
a plan and assess its strengths and weaknesses. We split 
these relations into local properties, which correspond to 
relations that hold for an individual or small set of 
elements in the plan, and global properties, which apply to 
the plan as a whole.  
 The utility of individual instances of these relations for 
summarization and comparison of a temporal plan will 
depend highly on (a) the domain under consideration, and 
(b) context. The next section discusses the issue of utility 
for MER mission plans in more detail. 



Local Properties 
Task Duration Task duration is the amount of time that 
has been reserved for a task to run.  



 <Task1> has been scheduled to run for N time units  



Such relations can be interesting when the time allocated is 
significantly smaller or larger than what is typical for tasks 
of that type.  
 
Task Ordering Relative ordering information among tasks 
and events, in the form of the thirteen Allen relations 
(Allen 1984), could potentially be useful in understanding 
a plan. For example, consider the following templates: 



 <Task1> precedes/follows <Task2> 
o e.g., Visit Rock1 before Rock2 



 <Task1> precedes/follows <Event1> 
o e.g., Download data before end of Day-1 



 <Task1> and <Task2> start/end/occur at the same 
time (i.e., synchronization) 



 <Task1> and <Task2> overlap 
 
A given plan will contain a large number of such relations, 
most of which will be of little significance to the user 
unless they are unusual or affect plan quality. For example, 
it is considered undesirable to have tasks overlapping with 
arm movements on the rover.  



Task Placement Task placement characterizes where a 
task occurs within a plan. For example, task placement 
relations could be characterized by the template: 



 <Task> is early/late/midway in the plan 



Task placements may be of interest when they are unusual. 
For example, communication between earth and the rovers 
usually occurs early or late during a sol; communicating 
mid-sol would be a deviation from standard practice. 
 
Task Separation Task separation characterizes temporal 
gaps between a pair of tasks, or a task and an event. 



 <Task1> occurs N time units before <Task2> 



Task separation relations may be of interest when they are 
either too short (e.g., insufficient buffer among actions to 
account for delays) or too long (e.g., too much idle time 
for the rover).  
 
Temporal Preference Satisfaction Temporal preference 
satisfaction is a characterization of whether stated temporal 
preferences for positioning and duration of individual 
tasks, as well as intervals between tasks, are satisfied.  



Global Properties 
Task Spacing A number of global measures of temporal 
properties of plans and schedules related to task spacing 
can be found in the literature. One common global measure 
is the overall temporal duration of the plan, often called the 
“makespan” of the plan. Various measures of temporal 
robustness have also been proposed, including concepts 
such as temporal flexibility, temporal slack, and stability 
(for example, see (Policella et al. 2004)).  
 Other forms of task spacing may be of interest, 
depending on the nature of the application domain. For 
example, the following are relevant to assessment of plans 
in the MER domain: 



 Degree of overlap among tasks. This value provides 
a measure of “density” of the plan. For many 
domains, it can be viewed as desirable to avoid 
extensive overlapping of tasks, which can 
complicate execution, monitoring, and repair.   



 Degree of synchronization among tasks. Tasks are 
synchronized if there are temporal constraints that 
link the times of their relative execution. The 
dependencies in highly synchronized plans can 
contribute to decreased robustness and more 
complex execution. 



 Utilization/Fragmentation. Utilization measures the 
degree of “busy” time, and hence can be useful in 
terms of understanding how effectively resources 
and time are being used. Fragmentation provides a 
related measure that characterizes occurrences and 
distributions of idle time. In the MER mission, for 
example, a measure of fragmentation can be helpful 
in identifying significant periods of rover 
downtime. 











 



 



Task Frequency A task can be unusual either because it 
occurs (e.g., rover deep sleep), occurs more times than 
normal (e.g., a large number of imaging operations), or 
does not occur (e.g., no imaging). The occurrence or 
nonoccurrence of tasks is in general not a temporal feature 
of a plan. For domains such as science mission planning, 
however, in which the objective is to maximize 
productivity of available resources by scheduling the most 
extensive possible set of activities from an overconstrained 
set, the nonoccurrence of tasks can often be attributed to 
temporal conflicts.  



Time Allocation Just as the time devoted to a particular 
task can be of interest, so can the total amount of time 
allocated to tasks of a particular type. Time allocations can 
be of interest both because they are unusually low (e.g., 
only 5 minutes of data download) or unusually high (e.g., 
awareness of extensive heating operations is important 
because they can draw down battery power significantly).  



Temporal Patterns Repeated local temporal relations of 
the type discussed above can reveal important structural 
characteristics of a plan. For example, it could be valuable 
to recognize that all tasks of a certain type are planned 
before all tasks of a different type (e.g., all pictures are 
taken before any traversals are made), or that all tasks 
occur before/after some significant event (e.g., all imaging 
is completed by noon). 



Global Temporal Preference Satisfaction The aggregate 
degree of satisfaction of temporal preferences will 
generally be an important factor in measuring the overall 
quality of a plan.  



Summarization Methods 
As noted above, any of the relations described in the 
previous section could be of potential interest to a user, 
depending on the circumstances. Our approach to 
identifying interesting temporal features of plans relies on 
the use of background information for a domain to help 
with the assessment of the significance of a particular 
relation for a given plan.  
 In developing our summarization framework for 
MAPGEN, we focused on the local relations of task 
duration and task ordering, and the global relations of time 
allocation, task frequency, and temporal patterns. Task 
placement relations were considered only relative to 
temporal landmarks (see the Task Ordering Relations 
section); other forms of task positioning are not important 
for MER plans.  
 Temporal preference satisfaction, both local and global, 
is extremely important for assessing overall plan quality. 
However, for weighted preferences, it is straightforward to 
identify those that are most significant within a given plan, 
and schemes for aggregating preferences over temporal 
plans are well studied (Khatib et al. 2001).  
 Task spacing relations, although not considered here, 
could potentially provide insight into important temporal 



features of a MER plan. We note, however, that MAPGEN 
includes a user interface that displays timelines for actions 
and expected resource levels.  In effect, this interface 
provides a direct visualization for the user of task overlap, 
synchronization, and utilization/fragmentation.   
 The rest of this section discusses the specific temporal 
feature summarization methods that we developed for the 
MER domain. These methods were implemented in a 
system called SITP (Summarization of Interesting 
Temporal Properties) that was evaluated on a test suite of 
ten sample plans. The results of the evaluation are 
described in the following section. 



Task Duration 
For task duration, we are interested in identifying tasks that 
have been scheduled for significantly shorter or longer 
periods of time than is typical. The main challenge here is 
defining what constitutes a typical duration for a task.  
 One simple approach is to define an interval (or 
intervals) of typical values a priori, drawing on inputs 
from domain experts. While straightforward, this approach 
imposes additional knowledge engineering responsibilities; 
furthermore, depending on the source of the knowledge 
and how the models are elicited, the models may have 
varying degrees of accuracy. 
 A preferred approach would be to learn the interval from 
historical data by applying data mining techniques. In 
statistical terms, the values of interest are those that can be 
viewed as outliers for a distribution (Moore and McCabe 
1999). While a variety of definitions for outliers have been 
proposed in the literature, many require identification of a 
distribution for the population of values, which in itself is a 
difficult task (Knorr and Ng 1997). We take a simpler, 
commonly used approach grounded in the notion of the 
interquartile range. 
 
Definition 1 [Interquartile Range]. Let S be a population 
of values with first quartile Q1 and third quartile Q3. The 
interquartile range for S is defined to be |Q3 – Q1|. 
 
Definition 2 [Typicality Interval, Outlier]. Let S be a 
population of values with interquartile range R, first 
quartile Q1 and third quartile Q3. The typicality interval for 
S is defined to be [Q1 – 1.5*R, Q3 + 1.5*R]. A value v is an 
outlier for S iff v lies outside the typicality interval for S. 
 
 For the experimental results reported in this paper, the 
lower and upper bounds for task duration were set to the 
bounds on the typicality interval computed for the 
population of values in the test suite of plans. As those 
results show, this definition was effective in identifying 
small numbers of cases that stood out from the population. 
We analyzed plots for all the task durations and found that 
in all but one case, the definition matched our intuitions for 
what we would consider interesting deviations from the 
population of values. In the one exceptional case, the most 
natural cutoff for identifying outliers was ambiguous.  











 



 



Task Ordering  
The most important task ordering relations for the MER 
domain are those that link certain types of tasks to key 
temporal landmarks for sols. These landmarks consist of 
sunrise, sunset, plan-start, and plan-end. Another useful 
temporal landmark is noon, when a rover would have 
maximal exposure to the sun, and hence have maximal 
potential for recharging its battery. 
 Communication was identified as one class of task that 
can often be anchored to temporal landmarks (specifically, 
tasks of type X_CARRIER_LGA and X_DFE_HGA). For 
example, a typical sol begins with an uplink of commands 
to the rover, and near the end of the sol, the rover 
downloads data collected during that sol.  
 In the SITP system, we provided a framework in which 
to declare relative time intervals within a sol during which 
tasks of a designated type would be expected to occur. To 
handle expectations about communication tasks, we 
defined the additional temporal landmarks end-of-early 
and start-of-late. End-of-early represents the transition 
from early in the day and was defined on a per-sol basis as 
commencing at two hours past plan-start. Similarly, start-
of-late marks the transition to end of the day and was 
defined on a per-sol basis as commencing two hours prior 
to plan-end.  Task types can have associated time-of-
occurrence properties, which indicate when those tasks 
should appear relative to temporal landmarks.  For 
example, the communication events of type 
X_CARRIER_LGA and X_DFE_HGA were declared to 
occur either early or late in the day.  



Task Allocation 
For task allocation, we were interested in identifying types 
of tasks to which significantly more or less than the typical 
time had been allocated within a plan. We adopted an 
approach similar to that used with task duration, relying on 
the definition of an outlier grounded in the interquartile 
range to identify interesting cases. The experimental 
results also employed allocation bounds computed from 
the distributions of values in the test suite of plans, and 
produced intuitive results.   



Task Frequency 
SITP supports the declaration of a frequency property for 
tasks designed to characterize how often they occur. In 
general, a range of different models of frequency could be 
useful in different settings. For example, in a personal 
calendar, one could imagine that a typical class of 
meetings takes place weekly, biweekly, or monthly, while 
other tasks (exercise, lunch) may occur daily. 
 Originally, we had expected to identify a set of MER 
tasks that occur rarely, and hence would be worth noting in 
the summarization of a plan. As our knowledge of the 
domain increased, we determined that although it may be 
unusual to perform certain MER activities in particular 
situations, no individual activities were inherently rare. It 
is the case, however, that certain tasks are expected to be 



performed within every sol or every plan, and the absence 
of one of these tasks is worthy of note.  
 For these reasons, we chose to focus on frequency 
values drawn from the set {hourly, per-plan, per-sol} for 
the MER domain. Alternatively, it could also be useful to 
consider a qualitative set of values, such as {low, medium, 
high}, to characterize the rate of occurrence in a more 
general manner.    



Temporal Patterns 
We explored the occurrence of temporal patterns defined 
over certain task types in an effort to find cases in which 
all (or most) instances of a task within a plan exhibited 
some potentially noteworthy property. In particular, SITP 
searches for patterns of unexpected task durations and task 
ordering relations, which we call the property of interest 
for the pattern. 
 More specifically, for a given plan, SITP identifies 
patterns in which a given task type occurs some minimum 
number of times (required-#occurrences) and for which 
some percentage of the instances of that type within the 
plan (required%) satisfy a designated property of interest. 
The experiments described later used the values required-
#occurrences=3 and required%=0.7. 



Observation Significance  
We use the term observation to refer to a temporal relation 
within a plan that has been determined to be potentially 
noteworthy using the methods described in the previous 
section.  Because some of the observed temporal relations 
will have greater import than others, we associate 
significance measures with observations.  Significance 
measures are normalized to lie in the interval [0,1] and are 
defined as the product of two factors: (1) a measure of the 
importance of the tasks associated with an observation, and 
(2) a strength of occurrence value.  
 One natural basis for defining a measure of importance 
is task priority.  MAPGEN associates priorities with tasks 
on a scale that ranges from 0 (maximum priority) to 5 
(minimum priority). For the test results presented below, 
these priorities were normalized to lie in the range [0,1] via 
the following computation: 



  (/ (+ 1 (abs  (- TaskPriority MinPriority))) 
        (+1 (abs (- MaxPriority MinPriority)))) 



The priority associated with local observations was set to 
this normalized task priority; the priority for global 
observations was set uniformly to MaxPriority. For 
domains without task priorities, background knowledge 
about the general importance of task types could be used 
instead.   
 The strength of occurrence values are designed to reflect 
the degree to which the observed relation holds. We define 
these values in a relation-specific way, as described below. 











 



 



 For tasks that were to occur within a given time interval, 
the strength of occurrence is defined to be the distance to 
the closest boundary of the interval, divided by the size of 
the interval, provided the value is no greater than 1; 
otherwise, the value is capped at 1. For situations in which 
the task could appear in multiple intervals, the strength of 
occurrence is defined relative to the closest boundary over 
all the possible intervals, divided by the size of the closest 
interval.  
 For tasks whose durations are determined to be 
unusually short, the strength of occurrence is defined to be 
the distance to the minimum duration associated with that 
task, divided by that minimum duration, provided the value 
is no greater than 1; otherwise the value is capped at 1. 
Similarly, for tasks with unusually long duration, the 
strength of occurrence is defined to be the distance to the 
maximum duration associated with the task, divided by 
that maximum duration, with the value capped at 1.  
 For temporal patterns, strength of occurrence is assessed 
as a measure of the ratio of the number of tasks of a given 
type that satisfy the property in question to the total 
number of tasks of that type in the plan.   
 For tasks that are noteworthy, because of either their 
inclusion or their omission, we use a uniform strength of 
occurrence of 1. 



Evaluation on MER Mission Plans 
We evaluated our temporal summarization framework by 
applying it to a suite of ten test plans provided by the 
MAPGEN team. The test plans are based on actual MER 
mission plans created via MAPGEN, but massaged slightly 
to eliminate the need for specialized resource reasoning 
components not relevant to our work.  Each plan was 
generated for a different mission day and so addressed 



different overall science objectives.  Plans are referred to 
by the number of the sol for which they were created (i.e., 
plan 223 was created for the 223rd sol of the mission).  



Examples 
Figures 1 and 2 show the results produced by SITP on two 
plans from the test suite. For completeness, we include all 
observations produced by SITP; in actual usage, SITP 
outputs would be filtered to account for user preferences, 
observation strength thresholds, and total number of 
observations.  In the output, durations are represented in 
the format “hh:mm:ss”, while dates have the form “yyyy-
mm-ddThh:mm:ss”. 
 Most observations begin with a prefix of the form   



 <observation-type> (<significance>): 



where <significance> denotes the significance measure 
defined earlier. (Temporal patterns present an exception 
and are discussed separately at the end of this subsection.) 
Each observation prefix is followed by a more detailed 
characterization of the observation, whose syntax depends 
on the observation type, as defined below. 
 Observations related to duration have type :SHORT-
DURATION-TASK or :LONG-DURATION-TASK, 
indicating that the task was shorter or longer than 
expected. The remainder of the observation is structured as 
either  



 <task-type><timestamp> (duration <duration>;      
lowbound <bound>) 



for :SHORT-DURATION-TASK observations or 



<task-type><timestamp> (duration <duration>; 
upbound <bound>) 



# Plan Steps: 63      
Start time: 2004-08-19T03:40:15      End time: 2004-08-20T04:06:30 
 



:MISSING-DAILY-TASK (1.0): X_CARRIER_LGA 



:LONG-DURATION-TASK (1.0): MTES_SPECTRA_OR_INTERFEROGRAMS at 2004-08-19T04:38:46 (duration 



35:12; upbound 13:32) 



:LONG-DURATION-TASK (1.0): PANCAM_SINGLE_POSITION at 2004-08-19T04:31:32 (duration 7:14; 



upbound 3:30) 



:LONG-DURATION-TASK (.83): PANCAM_SINGLE_POSITION at 2004-08-19T04:22:08 (duration 9:24; 



upbound 3:30) 



:LONG-DURATION-TASK (.48): CPU_ON at 2004-08-19T03:21:03 (duration 2:45:32; upbound



1:44:54) 



:UNDERALLOCATION (.48): UHF_COMM given 29:00 but has bound 55:30 



:LONG-DURATION-TASK (.19): NAVCAM_MOSAIC at 2004-08-20T03:49:53 (duration 4:16; upbound



3:36) 



:LONG-DURATION-TASK (.02): X_DFE_HGA at 2004-08-20T03:50:14 (duration 31:00; upbound 29:00) 



:LONG-DURATION-TASK (.01): X_DFE_HGA at 2004-08-19T03:27:04 (duration 30:00; upbound 29:00) 
 



 
Figure 1. SITP Output for Test Plan 223 



 











 



 



for :LONG-DURATION-TASK observations. 
 Observations related to task ordering have type 
:SHOULD-BE-EARLY, :SHOULD-BE-LATE, or 
:SHOULD-BE-EARLY-OR-LATE, indicating that the 
task started outside of the defined early, late, or early or 
late windows, respectively. The remainder of the 
observation is structured as  



<task-type><timestamp> (<duration> after early 
window) 



for a :SHOULD-BE-EARLY observation, 



<task-type><timestamp> (<duration> before late 
window) 



for a :SHOULD-BE-LATE observation, and 



<task-type><timestamp> (<duration1> after early 
window; <duration2> before late window) 



for a :SHOULD-BE-EARLY-OR-LATE observation. 
 Observations related to missing tasks have the form 



:MISSING-DAILY-TASK (<significance>): <task-
type> 



Observations related to over- or underallocation of time to 
a given task type are represented by the observation types 
:OVERALLOCATION and :UNDERALLOCATION, and 
are presented as follows: 



<task-type> given <allocation> but has bound 
<bound> 



Temporal pattern observations have the observation type 
:ALLTASKS and are presented as   



 :ALLTASKS <relation-type> (<significance>):  
<task-type> (<n> occurrences)  



Here, <relation-type> specifies the type of temporal 
relation that constitutes the property of interest over which 
the pattern is defined; <n> denotes the number of instances 
of the task type in the plan that satisfied the relation. 



Analysis of Results 
The total number of observations produced for the ten 
plans in the test suite was 76, with the number for 
individual plans ranging from 3 to 15.  The median number 
of observations was 7.   
 Interestingly, there was no correlation between plan size 
(i.e., number of tasks) and number of observations 
extracted by SITP, with one exception (see Figure 3).  The 
plan sol-300 was the largest plan (87 tasks) and produced 
the most observations (15).  Closer examination of plan 
sol-300 shows that the reason for the high number of 
observations is not the size of the plan, but rather its 
temporal scope: while the other plans in the test suite occur 
within a single sol, sol-300 spans three sols.   Some aspects 
of our background model of typicality were not well suited 
to multi-sol plans.  So, for instance, the longer temporal 
scope of the plan resulted in more communication tasks as 
well as increased usage of the CPU than was typical in 
single-sol plans.  These led to SITP producing 
:OVERALLOCATION observations for tasks of type 
UHF_COMM, X_CARRIER_LGA, X_DFE_HGA, and 
CPU_ON. Furthermore, the expectation that 
communications would occur early or late in the plan 
broke down, as reflected in two observations of type 
:SHOULD- BE-EARLY-OR-LATE each for the task 
types X_CARRIER_LGA and X_DFE_HGA. 
At one level, the abundance of observations for the plan 
sol-300 can be used as a justification for our approach:  the 
multi-sol plan is unusual and its atypicality comes through  
in the temporal summaries.  This case does, however, point 



# Plan Steps: 39 
Start time: 2004-12-01T21:23:39      End time: 2004-12-03T00:07:22 



:LONG-DURATION-TASK (1.0): NAVCAM_MOSAIC at 2004-12-02T03:07:56 (duration 11:42; upbound 



3:36) 



:LONG-DURATION-TASK (1.0): PANCAM_SINGLE_POSITION at 2004-12-01T23:47:30 (duration 7:14; 



upbound 3:30) 



:LONG-DURATION-TASK (1.0): PANCAM_SINGLE_POSITION at 2004-12-01T23:40:16 (duration 7:14; 



up bound 3:30) 



:LONG-DURATION-TASK (.35): CPU_ON at 2004-12-02T01:39:39 (duration 2:28:44; upbound 



1:44:54) 



:SHORT-DURATION-TASK (.13): PANCAM_SINGLE_POSITION at 2004-12-02T23:50:39 (duration 2:03; 



lowbound 2:22) 



:SHORT-DURATION-TASK (.13): PANCAM_SINGLE_POSITION at 2004-12-02T23:40:51 (duration 2:03; 



lowbound 2:22) 



:SHOULD-BE-EARLY-OR-LATE (.05): X_CARRIER_LGA at 2004-12-01T23:30:23 (06:44 
beyond early window, 16:36:59 before late window) 



 
Figure 2. SITP Output for Test Plan 325 



 











 



 



   
out the need to contextualize the domain models to a 
greater extent – a point to which we return in the 
Discussion section. 
 The most frequent observation type was :LONG-
DURATION-TASK (54 occurrences) followed by 
:SHORT-DURATION-TASK (7 occurrences).  The 
asymmetry between tasks that were atypically long or short 
occurred because populations of task durations in the 
sample plans resemble exponential distributions, with a 
preponderance of short durations along with a tail 
containing some small number of longer durations.    
 Only a single :SHOULD-BE-EARLY-OR-LATE 
observation occurred outside of plan sol-300, and with a 
weak strength of occurrence (.06).  Two additional  
:OVERALLOCATION  observations were produced 
outside of plan sol-300, one for UHF_COM tasks, another 
for MTES_SPECTRA_OR_INTERFEROGRAMS tasks. 
Two plans lacked any X_CARRIER_LGA task, which was 
declared in the background model as occurring daily.  
Finally, a single :UNDERALLOCATION observation was 
produced (for the UHF_COM task type).  
 No temporal patterns were detected, which indicates that 
the individual plans did not exhibit high degrees of 
variability in unexpected task durations and task ordering 
relations (which were the two properties of interest 
considered for temporal patterns).  
 Overall, we believe that the results on the test suite show 
that our techniques can be effective in highlighting 
potentially significant temporal elements of plans. As such, 
they should make it easier and faster for a user to explore a 
rich space of potential solutions.  



Discussion 
Our approach to summarizing interesting temporal features 
of plans has the advantage that it is straightforward to 
implement and simple to compute.  Although we have 
emphasized summarization for plans, our techniques apply 
equally well to execution traces for plans. In particular, 
these methods could be useful in spotting, after the fact, 



unusual aspects of what actually happened during 
execution, as opposed to what was planned for execution. 
 One potential issue with our approach is the effort 
required to formulate the background model used to drive 
the identification of interesting temporal features.  The 
model presented here assumes uniformity of temporal 
characteristics over all plans.  For the MER domain, 
however, time allocations, durations, and priorities can 
vary with the type of sol being planned (e.g., Drive, 
Approach, Remote Science, Scratch-and-Sniff) as well as 
the temporal scope of the plan (e.g., single- vs multi-sol).  
This specialization introduces the need to contextualize the 
models in various ways.  If the number of contexts is 
relatively small, as is the case for MER plans, this 
contextualization should not lead to a significant increase 
in the effort required to build the model.  
 Although we have focused on extracting summaries of 
temporal features for an individual plan, it would be 
straightforward to develop a plan comparison tool built on 
SITP that could identify commonalities or differences in 
temporal features across plans.  A comparison tool of this 
type would be valuable in aiding with exploration of a 
complex solution space. It could also help a user 
understand the effects of possible or actual changes to be 
made to a plan.  
 Individual users will most likely vary in their 
perspectives on what is important or noteworthy in a plan.  
If put into operational use, a tool like SITP should be 
augmented with a customization capability grounded in a 
user profile that designates the types of temporal relations 
and tasks of greatest interest to the user. This profile could 
take the form of a series of weights defined for the 
relations and tasks, and would be specified a priori on a 
per-user basis.  However, it could potentially be adapted 
over time by incorporating feedback from the user on the 
types of observations that proved to be helpful in practice.  
 For certain types of domains, it may be important to 
provide some form of summarization of the overall 
temporal structure or phasing of a plan in addition to the 
observations extracted by SITP. For example, a structural 
summarization would be helpful for complex military 
plans, in which the overall temporal flow and temporal 
synchronization are key to understanding plan strategy. 
For MER missions, such an overall temporal 
summarization is not important given that plans consist of 
a collection of tasks with only loose temporal coupling. 
Similarly, a collection of calendar entries would have no 
global strategy, but rather only limited intertask linkage.  



Related Work 
Relatively little work has been published to date on 
summarizing plans.  Most of what can be found in the 
literature focuses on plans without explicit temporal 
representations (e.g., (Mellish and Evans 1989; Myers 
2006; Young 1999)). (Clement et al. 2007) describe a 
method for generating hierarchical abstractions of state 
conditions and resource usage for temporal plans.  



Figure 3. Plan length and number of observations for  
plans in the MER test suite 
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However, the motivation for that work is coordinating 
distributed schedulers rather than improved user 
understandability.  
 There has been work within the constraint reasoning 
community on the related topic of explanation, most of 
which focuses on explaining temporal conflicts that arise 
during the search for a solution. As pointed out by (Smith 
et al. 2005), most of this work assumes a system-level 
perspective in that explanations are grounded in constraints 
and reasoning processes of the system rather than at a level 
that targets a user’s conceptualization of the domain.    
  Some efforts, however, adopt a more user-centric view 
of explanation.  (Smith et al. 2005) introduce a rich 
ontology for grounding both explanations of temporal 
constraint conflicts and recommendations for repairing 
them.  (Bresina and Morris 2006) also define techniques to 
explain and resolve temporal inconsistencies, within the 
context of MAPGEN plans. Their work focuses on 
distilling from a complex temporal no-good, which may 
have hundreds of constituent constraints, a small set that 
communicates the essence of the conflict. 



Conclusions 
We have described an approach to summarizing temporal 
plans that identifies regularities or exceptional temporal 
properties, drawing on a modest domain theory to drive the 
search process. This method can be used to highlight 
aspects of a plan that could potentially impact a user’s 
willingness to accept that plan. We developed an 
implementation of the framework, called SITP, and 
evaluated the framework on a suite of test plans from the 
MER mission. This evaluation shows promise that the 
summarization techniques can be helpful in increasing user 
understandability of complex temporal plans. 
 In future work, we will seek validation of our 
summarization approach from members of the MAPGEN 
community. We will also explore the application of our 
framework to other types of temporal plans, most notably 
personal calendars. 
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Abstract



A user’s interaction with a computer operating system is most
commonly reflected in the use of “desktop” application pro-
grams. In this paper we investigate the prospect of building
plans that link together the services provided by such applica-
tions using an inter-process communication language called
DCOP (Desktop COmmunication Protocol). Such services
can be used to manipulate or query desktop applications, of-
ten in a manner similar to the standard user interfaces of those
applications, while offering the possibility of a practical in-
terface that a planning agent can utilize in a real software
setting. Using the knowledge-level conditional planner PKS,
we show how we can construct plans for controlling a set of
existing desktop applications in the open source K Desktop
Environment (KDE), and illustrate our approach with a series
of fully executable examples that include application control
and information gathering, under conditions of incomplete in-
formation and sensing.



Introduction
In an operating system environment, a user’s experience is
typically reflected in the use of desktop applications, pro-
grams such as e-mail clients, word processors, media play-
ers, and web browsers that provide the user with an ab-
stracted interface to the tasks that can be performed with
a modern operating system. From the point of view of an
agent (human or artificial) operating in such an environment,
application programs provide services that can be exploited
by the agent to fulfil its goals or objectives. Designing an
artificial agent that can use such services effectively in a
real software setting, however, is both a potentially bene-
ficial and particularly challenging task.



Planning in an operating system environment is not a new
idea. For instance, the Softbot project (Etzioni et al. 1993;
Etzioni & Weld 1994) focuses on the design of software
agents capable of functioning in the UNIX and Internet en-
vironments, where software actions such as ftp and lpr are
used as effectors for manipulating the environment, and ac-
tions like ls and finger are available as sensors for gather-
ing information from the environment. The knowledge-level
planning work of (Petrick & Bacchus 2002) similarly uses
UNIX as a domain for planning with incomplete informa-
tion and sensing actions. The extensive work on planning for
web services, and in particular the web service composition



problem (e.g., (Pistore et al. 2005; McIlraith & Son 2002;
Martı́nez & Lespérance 2004), among others), continues to
investigate how programs or devices available through the
World Wide Web can be used to achieve an agent’s goals.



In this paper we focus on the problem of constructing a
planning agent that is capable of interacting with a set of
common application programs in a desktop environment.
Unlike those approaches that focus on modelling low-level
UNIX commands, the desktop applications we are interested
in typically operate at a much higher level of abstraction. For
instance, a media player may work with playlists constructed
from meta-level properties like user preference, artist, and
genre, compared with programs like ls and lpr that directly
manipulate files and directories. Furthermore, since our fo-
cus is on the desktop environment, we are more concerned
with “local” services rather than external web services, ex-
cept for those desktop applications that provide immediate
interfaces to the external world (e.g., web browsers, me-
dia players that can play remote audio streams, etc.). Fi-
nally, since we are interested in constructing practical plan-
ning agents, we will focus on real applications running in a
real desktop environment, and use existing inter-application
communication facilities as much as possible, to take advan-
tage of technology already in use.



To this end, we will work within the K Desktop Envi-
ronment (KDE),1 an open source, freely available desktop
for UNIX-like systems. One of the novel features of this
platform is its rich inter-process communication language
DCOP (Desktop COmmunication Protocol), which provides
the infrastructure for applications to publish their services to
other programs running in the environment. What makes
this interface particularly interesting is that an application’s
published DCOP services are often quite similar to the func-
tions a human user can perform through the application’s
standard (usually graphical) interface. It is this high level of
abstraction that we hope to leverage for planning purposes.



To generate plans in this setting we will work with the
knowledge-level conditional planner PKS (Petrick & Bac-
chus 2002) and makes use of PKS’s ability to reason about
incomplete information using limited, but expressive, repre-
sentations of the agent’s knowledge state. While previous
work has applied PKS to both the problem of planning with



1The KDE project website is located at www.kde.org.











Figure 1: The K Desktop Environment (KDE)



UNIX commands (Petrick & Bacchus 2004) and web ser-
vices (Martı́nez & Lespérance 2004), we also believe that
this approach can also be successful in the desktop environ-
ment described above.



This paper is organized as follows. First, we will describe
DCOP and its use in KDE-based applications. Second, we
will briefly describe the operation of PKS. Third, we will de-
scribe a series of planning examples in our desktop domain
that are fully executable using PKS and existing KDE ap-
plications, and briefly mention some details concerning plan
execution. Finally, we will discuss some issues related to our
approach and describe the future directions of this research.
Our goal in this paper is twofold: to highlight the desktop
services environment as a real-world (software) domain that
has been largely overlooked as a testbed for applying plan-
ning technology, and to provide results of our preliminary
experiments in this domain.



Desktop COmmunication Protocol (DCOP)
The Desktop COmmunication Protocol (DCOP) (Brown et
al. 2003) is a protocol that enables inter-process communi-
cation between applications running in the K Desktop En-
vironment (see Figure 1). DCOP allows KDE-based appli-
cations to publish some of their capabilities or services for
interoperability with other applications, by providing a pub-
lic interface to these features. In particular, developers are
free to decide what services their applications should make
available, with DCOP supplying the common interface to
these services. What makes DCOP different from other IPC
languages (e.g., CORBA, ICE, etc.) is that underlying sup-
port for the protocol is provided by KDE itself, where DCOP
forms an integral component of the desktop environment.



Although any feature of an application can be exported
as a DCOP service, in practice, many applications provide
services that are similar to those that can be performed by
a user working with the standard (usually graphical) inter-
face to the application. Since DCOP operates on particular
instances of running applications, these services typically in-
clude commands for changing or querying an application’s
state. For example, Figure 2 shows a fragment of the DCOP
interface for the Amarok media player. Functions like play



void mute()
void pause()
void play()
void setVolume(int volume)
void enableRepeatTrack(bool enable)
QString artist()
QString nowPlaying()
QString title()
... ...



Figure 2: A fragment of a media player’s DCOP interface



and setVolume provide a means of changing the state of the
application, while nowPlaying and title provide feedback
about the application and are more akin to information gath-
ering operations. Moreover, these services provide a very
abstract (and natural) interface to the application.



From a development point of view, the DCOP interface is
available in a variety of programming languages, including
C++, C, Perl, and Python. In addition, DCOP services can
also be accessed through a command line interface provided
by KDE, making them useful for writing scripts (Wheeler
2003). For instance,



$ dcop amarok player play



directs Amarok to play its current playlist using a DCOP
service available in the player category.2



In this paper we are interested in using DCOP as an
action-level language for planning, where the plans we
generate will contain operations that closely correspond to
DCOP services available in existing KDE applications.3
Thus, our plans will be similar to DCOP scripts, but with ex-
tra plan-level control directives. The prospect of planning at
the DCOP level is particularly appealing due to the level of
abstraction already built into many of the available services.
Building a formal action model for a planner that uses al-
ternate interfaces to the same application (e.g., UNIX-style
command-line options) may mean describing such actions
in much lower-level detail. As well, alternative interfaces
to the same set of features may not be available for many
applications, except through standard graphical interfaces.
Finally, the variety of programming languages available for
accessing the DCOP interface leaves us a great deal of flex-
ibility for executing plans.



Planning with Knowledge and Sensing (PKS)
To generate plans in this setting we will use PKS (Plan-
ning with Knowledge and Sensing), a conditional planner
that can construct plans in the presence of incomplete in-
formation and sensing actions (Petrick & Bacchus 2002;
2004). PKS takes a “knowledge-level” approach to plan
generation by reasoning about its own knowledge and how
its knowledge state—rather than the world state—changes
due to action. PKS also works with a restricted subset of
a first-order language, and a limited amount of inference in



2Services are typically categorized so that an applica-
tion/category/name triple is need to identify a particular service.



3All the examples we describe in this paper use actual KDE
applications and DCOP interfaces, unless otherwise noted.











that subset, which allows it to support a rich representation
that includes non-propositional features such as functions
and variables, and to reason efficiently with that represen-
tation. This approach differs from planners that work with
propositional representations over which complete reason-
ing is feasible, or approaches that model incomplete knowl-
edge based on sets of possible worlds (e.g., BDDs (Bryant
1992), Graphplan-like structures (Weld, Anderson, & Smith
1998), clausal representations, or other such techniques). By
working at the knowledge level, PKS can often abstract its
reasoning away from irrelevant distinctions that occur at the
world level.



PKS is based on a generalization of STRIPS (Fikes &
Nilsson 1971). In STRIPS, the state of the world is modelled
by a single database; actions update this database and, by do-
ing so, update the planner’s world model. In PKS, the plan-
ner’s knowledge state, rather than the world state, is repre-
sented by a set of five databases, the contents of which have
a fixed, formal interpretation in a modal logic of knowledge.
Actions can modify any of the databases, which has the ef-
fect of updating the planner’s knowledge state. To ensure
efficient inference, PKS restricts the type of knowledge (es-
pecially disjunctions) that it can represent in each database.
We briefly mention these databases below.
Kf : This database is similar to a standard STRIPS database
except that both positive and negative facts are permitted and
the closed world assumption is not applied. Kf is used for
modelling the effects of actions that change the world. Kf



can include any ground literal `, where ` ∈ Kf means “the
planner knows `.” Kf can also contain information about
known function mappings.
Kw: This database models the plan-time effects of “binary”
sensing actions. φ ∈ Kw means that at plan time the planner
either “knows φ or knows ¬φ,” and that at execution time
this disjunction will be resolved. PKS is able to use such
“know-whether” information to construct conditional plans.
Kv: This database stores information about function values
that will become known at execution time. In particular, Kv



can model the plan-time effects of sensing actions that return
numeric values. Kv can contain any unnested function term
f , where f ∈ Kv means that at plan time the planner “knows
the value of f .” At execution time the planner will have
definite information about f ’s value. As a result, PKS is
able to use Kv terms as “run-time variables” (Etzioni et al.
1992) in its plans.



The fourth database, Kx, models the planner’s “exclusive-
or” knowledge of literals, namely that the planner knows
“exactly one of a set of literals is true.” Such knowledge
is common in many planning scenarios. The fifth database,
LCW , stores the planner’s “local closed world” informa-
tion (Etzioni, Golden, & Weld 1994), i.e., instances where
the planner has complete information about the state of the
world. We will not use Kx or LCW in this paper.



PKS actions are modelled as queries and updates to the
databases. Action preconditions are specified by lists of
primitive queries that ask simple questions about the state
of the planner’s knowledge: (i) Kp, is p known to be
true?, (ii) Kvt, is the value of t known?, (iii) Kwp, is p
known to be true or known to be false (i.e., does the plan-



Action Preconditions Effects
pickup(x) K(handempty) add(Kf , holding(x))



add(Kf ,¬handempty)
inspect(x) K(holding(x)) add(Kw, fragile(x))



Table 1: PKS actions



ner know-whether p?), or (iv) the negation of queries (i)–
(iii). An inference algorithm evaluates queries by check-
ing database contents, taking into consideration the interac-
tion between different types of knowledge. Action effects
are described as updates to the planner’s knowledge state,
and are specified by collections of STRIPS-style “add” and
“delete” operations that modify the contents of the individ-
ual databases. For example, add(Kf ,¬φ) would add ¬φ
to Kf , and del(Kw, φ) would remove φ from Kw. Actions
are permitted to have ADL-style context-dependent effects
(Pednault 1989), where the secondary preconditions of an
effect are also described by lists of primitive queries. Ac-
tions and goals can also make use of a limited form of quan-
tification that ranges over known instantiations of x (e.g.,
∀Kx and ∃Kx).



PKS constructs plans by applying actions in a simple
forward-chaining manner: if the preconditions of an action
are satisfied by the planner’s knowledge state, then the ac-
tion’s effects are applied to the state to produce a new knowl-
edge state. Planning then continues from this new state. For
actions with context-dependent effects, secondary precon-
ditions are similarly evaluated against the knowledge state
to determine if their effects should be applied. PKS can also
add a conditional branch to a plan provided it has Kw knowl-
edge of a formula φ. Along one branch (K+), φ is assumed
to be known while along the other branch (K−), ¬φ is as-
sumed to be known. Planning continues along each branch
using the new knowledge states, until each branch satisfies
the goal, also specified as a list of primitive queries.



Consider the two actions in Table 1, pickup(x) and
inspect(x), and consider an initial knowledge state defined
by Kf = {handempty}, where all the other databases are
empty. If the planner knows about an object vase then
since handempty is in Kf , the preconditions of pickup(vase)
would be satisfied. Applying this action results in the
new state represented by the updated database Kf =
{¬handempty, holding(vase)}. At this point the precondi-
tions to inspect(vase) are also satisfied since holding(vase)
is in Kf . Applying this action leaves Kf unchanged but
produces Kw = {fragile(vase)}, indicating that the plan-
ner knows whether the vase is fragile or not. At this
point the planner could construct a conditional branch in the
plan: along one branch it would assume that fragile(vase)
is known, while along the other branch it would assume
¬fragile(vase) is known. Planning can then continue along
each of these new branches.



Planning for Desktop Services
One of our aims in this paper is to demonstrate that we can
use PKS to construct plans whose actions closely correspond
to the DCOP services provided by common KDE applica-











Action Precond. Effects
amarok::playlist::
addMedia(x) K(media(x)) add(Kf , inplaylist(x))



add(Kf , track(x) = total + 1)
add(Kf , total = total + 1)



clearPlaylist add(Kf , total = 0)
add(Kf , current = 0)
∀Kx.del(Kf , inplaylist(x))
∀Kx.del(Kf , track(x))



amarok::player::
play K(total > 0) ⇒



add(Kf , playing)
K(current = 0) ⇒



add(Kf , current = 1)
next K(total > current) ⇒



add(Kf , current += 1)



Table 2: Amarok media player actions



tions. In this section we present a series of examples that
illustrate the practicality of the DCOP services provided by
real KDE applications, which we feel lends support to our
argument that generating plans at this level of abstraction is
both feasible and desirable.



In each example we consider a set of DCOP services, pro-
vide a PKS representation of those services, and describe
some simple plans we can generate using the PKS encod-
ing. From a planning point of view, these domains present a
number of interesting challenges, including reasoning about
incomplete information and sensing actions, resource man-
agement, function manipulation, and arithmetic evaluation.
In each example we will only model a portion of the to-
tal services available for a given application. Most impor-
tantly, we have attempted to make our domain encoding (and
subsequent plans) as true to the DCOP interface as possi-
ble. While we must still postprocess our plans for execution
purposes (described below), our aim is to keep this step as
minimal as possible. For exposition purposes, however, we
have simplified our examples in some cases, for instance us-
ing short identifiers for filenames and applications instead of
fully instantiated paths.



All of our examples were generated using the latest public
version of PKS (version 0.7) running on a 1.86 GHz proces-
sor with 2Gb of RAM available. All generated plans were
subsequently executed on the same system using KDE 3.5.7.



Controlling an application
In the first domain we consider a set of actions for control-
ling Amarok, a popular KDE media player.4 The DCOP in-
terface provided by Amarok consists of functions for manip-
ulating all aspects of the application, including the playlist,
music collection, and player state. In this example we will
only consider four DCOP services: addMedia(x), which
adds a valid media file to Amarok’s playlist; clearPlaylist,
which removes all entries from the current playlist; play,
which instructs the player to start playing the current
playlist; and next, which tells the player to advance to the



4The Amarok website is located at amarok.kde.org.



next track in the playlist. Table 2 lists these services and
their corresponding representation as PKS actions.5



The PKS actions in Table 2 do not require sensing, but use
PKS’s ability to manipulate functions and to perform simple
arithmetic reasoning. For instance, track(x) is a function
denoting the position of track x in the playlist, total stores
the total number of entries in the playlist, and current de-
notes the “active” track (which may or may not be playing).
The predicate inplaylist(x) indicates x is in the playlist, and
playing indicates whether or not a track is playing.



Using these actions was can generate a number of inter-
esting plans that are immediately executable on KDE us-
ing the DCOP interface. We consider three simple exam-
ples. In each case the planner initially has knowledge of
three media files, denoted by the initial database Kf =
{media(track1), media(track2), media(track3)}, where all
other databases are empty.



If we present PKS with the goal K(playing), i.e., bring
the application to a state where it is playing, then PKS is
able to construct the plan:



amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track1)
amarok::player::play



In other words, the media player can start playing provided
it has first added a track to the playlist.



We can also instruct PKS to achieve the more com-
plex goal K(playing) ∧ K(track(track3) = current) ∧
∀Kx.K(media(x)) ⇒ K(inplaylist(x)), i.e., ensure track3
is playing and all known tracks have been added to the
playlist. Doing so produces the plan:



amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track3)
amarok::playlist::addMedia(track1)
amarok::playlist::addMedia(track2)
amarok::player::play



In this case PKS achieves the goal by ensuring track3 is the
first track added to the playlist. The occurrence of play as
the last action is completely arbitrary and PKS could alter-
natively build plans where play occurs at any point after the
first addMedia action.



Finally, if we provide the goal K(playing) ∧ K(total =
current) ∧ ∀Kx.K(media(x)) ⇒ K(inplaylist(x)), i.e., en-
sure all tracks are loaded and the last track is playing, then
PKS generates the plan:



amarok::playlist::clearPlaylist
amarok::playlist::addMedia(track1)
amarok::playlist::addMedia(track2)
amarok::playlist::addMedia(track3)
amarok::player::play
amarok::player::next
amarok::player::next



5We will use the notation app::category::service to refer to a
service’s full name. Thus, amarok::player::play would refer to
Amarok’s play service found in the player service category.











Action Precond. Effects
amarok::player::
isPlaying add(Kw, result(playing))
isOsdEnabled add(Kw, result(osd))
knotify::
notify(x, y) K(service(x)) add(Kf , notified(?x))



K(msgsend(x, y))
Domain specific update rules
K(result(x)) ⇒ add(Kf , msgsend(x, true))
K(¬result(x)) ⇒ add(Kf , msgsend(x, false))



Table 3: Amarok information state actions



In this plan the next action is required to advance the actively
playing track to the end of the playlist.



We note that the above examples only model some of
the basic controls provided by Amarok’s DCOP interface,
which permits much more sophisticated access to the ap-
plication. (For instance, we do not model automatic track
changes, or the many services available for accessing the
playlist and music collection.) Even so, these examples il-
lustrate the high degree of control that DCOP services can
provide over an application, and demonstrate their value in a
practical planning setting: these services closely correspond
to the actions a user could perform using the application’s
standard graphical interface.



Querying the state of an application



In the previous example we used a set of DCOP services to
change the state of the Amarok media player. In this ex-
ample we consider two DCOP services that let us access
Amarok’s internal state. In this case we will use such ser-
vices as information gathering actions and inform the user
as to the results gathered (also using a DCOP service).



The set of DCOP services we consider is listed in Ta-
ble 3, along with the PKS encoding of these services. The
isPlaying service queries whether or not the media player
is currently playing, while the isOsdEnabled service deter-
mines if the player’s on-screen display is enabled or not.
These two services are modelled as PKS sensing actions that
have the effect of adding information to the Kw database.
The notify(x, y) service is provided by an application called
Knotify which, among other things, is able to display an in-
formation dialogue box to the user. We have simplified our
encoding of this service for our particular purpose, where x
denotes a service name and y the message to be sent. The
domain specific update rules, which are automatically ap-
plied by PKS after each action application, are used as part
of our wrapper around notify.



If we consider the scenario where PKS knows about the
two Amarok services, denoted by the initial database Kf =
{service(playing), service(osd)} (where the other databases
are empty), then presenting PKS with the goal of sending a
notification for each known service, ∀Kx.K(service(x)) ⇒
K(notified(x)), results in the plan:



Action Precond. Effects
KWeatherService::WeatherService::
stationCode(x) Kv(x) add(Kw, validCode)



add(Kv, code)
temperature(x) K(validCode) add(Kv, stationTemp)



K(code = x)
external::kdialog::
inputbox add(Kv, stationName)



Table 4: Kweather domain actions



amarok::player::isPlaying
amarok::player::isOsdEnabled
branch( result(osd) )
K+ :



branch( result(playing) )
K+ :



knotify::notify(playing,true)
knotify::notify(osd,true)



K− :
knotify::notify(playing,false)
knotify::notify(osd,true)



K− :
knotify::notify(osd,false)
branch( result(playing) )
K+ :



knotify::notify(playing,true)
K− :



knotify::notify(playing,false)



In this case, our plan wraps PKS-level controls around
DCOP-level services. The plan begins by querying
Amarok’s state using the two Amarok services, which pro-
vides the planner with “know whether” information about
result(playing) and result(osd). A conditional branch is
added to the plan at this point, based on result(osd), letting
the planner reason about the two possible outcomes of this
information: along the positive branch (K+), result(osd) is
assumed to be true (i.e., the on-screen display is enabled);
along the negative branch (K−), ¬result(osd) is assumed
to be true (i.e., the on-screen display is disabled). At this
point, the update rules are applied. Along the branch where
result(osd) is true, msgsend(osd, true) is also made true,
while along the other branch, msgsend(osd, false) is made
true. In other words, PKS comes to know what message
it should send depending on the status of the isOsdEnabled
service. The second nested branch for result(playing) per-
forms a similar task for determining what message should
be sent for the isPlaying service. The notify actions in the
plan handle the four possible combinations of outcomes, one
for each branch in the plan.



Desktop interfaces to web services
In the third domain we consider a desktop-based interface to
a web service: the Kweather applet that can access a remote
weather server. We are not concerned with the particular
web service in question, but instead with the DCOP services
this application offers for accessing the web service.



Table 4 lists two DCOP functions provided by Kweather.











stationCode(x) takes a name x of a weather station loca-
tion and returns a station ID code, provided the name is
valid. temperature(x) returns the temperature at a given sta-
tion specified by its ID code x, provided that code is valid.
The third service listed in Table 4, inputbox, is not a DCOP
service but a function provided by the kdialog application
which is typically used in script writing to prompt a user
for input. Executing this service causes a graphical dialogue
box to be shown, allowing the user to enter a string of text.



Table 4 presents a PKS encoding of the three services.
(The interaction between validCode and station codes has
been simplified and can be handled in a more general way).
This representation leans heavily on PKS’s ability to use
functions. For instance, code is used to represent a sta-
tion code, while stationName represents a station name.
validCode is a predicate indicating whether the current code
is valid or not. Our encoding of stationCode(x) also has an
effect that adds validCode to Kw. PKS can use such infor-
mation to add conditional branches to a plan (see below).



If PKS starts with an initial state where all of PKS’s
databases are empty, and is presented with the goal
Kv(stationTemp) ∨K(¬validCode), i.e., come to know the
temperature or report failure, then it can construct the plan:



external::kdialog::inputbox
KWeatherService::WeatherService



::stationCode(stationName)
branch(validCode)
K+ :



KWeatherService::WeatherService
::temperature(stationCode)



K− :
nil



The result is a conditional plan with a single branch. First,
the plan prompts the user for input using inputbox. Next,
it attempts to determine the station code from the user’s in-
put. The function stationName in this case is used as an
argument to stationCode as a type of run-time variable that
will be replaced by the actual value of stationCode at ex-
ecution time. The branch in the plan is structured to rea-
son about the outcome of validCode: along the K+ branch
validCode is assumed to be true, while along the K− branch
¬validCode is assumed to be true. In the first branch, the
temperature service is used to obtain the station’s tempera-
ture, where stationCode acts as a run-time variable. In the
other branch, the plan simply terminates.



The importance of this example lies in our use of local
desktop services to access external web services. In particu-
lar, DCOP provides an abstraction layer around much of the
uncertainty concerning remote services (e.g., network reli-
ability) and supplies a common interface that lets us avoid
having to manage multiple service description languages
and data exchange formats. Of course, we can only take
advantage of web services in this manner provided an appli-
cation with a suitable DCOP interface exists (or if we build
one). Since many applications blur the line between desktop
and network (especially the Internet), however, finding ways
to use such services effectively is a worthwhile endeavour.



Action Precond. Effects
external::dcop::
find(x) K(KdeApp(x)) add(Kw, running(x))
klauncher::
kdeinit exec(x) K(KdeApp(x)) add(Kf , running(x))



K(¬running(x))
app::mainwindow::
minimize(x) K(running(x)) add(Kf , minimized(x))



add(Kf ,¬maximized(x))
maximize(x) K(running(x)) add(Kf , maximized(x))



add(Kf ,¬minimized(x))
restore(x) K(running(x)) add(Kf ,¬minimized(x))



add(Kf ,¬maximized(x))



Table 5: Desktop management actions



Desktop-level application management



In the final domain we consider a set of DCOP services com-
mon to a wide range of applications, that manipulate desktop
applications as “entities,” rather than providing interfaces to
application-specific functions. As we noted above, DCOP
services require an executing instance of the application. In
particular, we illustrate plan-level control over application
execution, and manipulate a set of properties common to
most windows-based application interfaces.



Table 5 shows five desktop services. The first service,
find(x), is not strictly a DCOP service but abstracts be-
haviour provided by the DCOP mechanism itself: DCOP
can determine whether a particular KDE application is run-
ning or not. Here, our PKS encoding is a wrapper around
this service. The second service, kdeinit exec(x) is provided
by an application called klauncher which is able to control
application execution. In this case, the service directs an in-
stance of a particular KDE application x to be started. The
remaining three services, minimize(x), maximize(x), and
restore(x), fall into a class of common services provided by
many GUI-based applications, and are similar to the widget
controls found on applications with windowed interfaces.6



The PKS encoding of find in Table 5 models its effects
as a sensing action that adds knowledge of running to the
Kw database. Thus, after adding find(x) to a plan PKS can
construct a conditional branch based on running to reason
about the execution state of individual applications.



For instance, consider a scenario described by the ini-
tial database Kf = {KdeApp(app1), KdeApp(app2),
KdeApp(app3), running(app2)}, where all other databases
are empty. Thus, PKS knows about three applica-
tions, app1, app2, and app3, and knows that app2
is already running. If we present PKS with the
goal K(¬minimized(app2)) ∧ K(maximized(app3)) ∧
∀Kx.K(KdeApp(x)) ⇒ K(running(x)), i.e., ensure all
three applications are running, app2 is minimized, and app3
is maximized, then one possible plan PKS generates is:



6Although we group these services together, each application
typically provides its own set of DCOP mainwindow services.











external::dcop::find(app1)
external::dcop::find(app3)
apps::mainwindow::restore(app2)
branch( running(app3) )
K+ :



apps::mainwindow::maximize(app3)
branch( running(app1) )
K+ :



nil
K− :



klauncher::kdeinit exec(app1)
K− :



klauncher::kdeinit exec(app3)
apps::mainwindow::maximize(app3)
branch( running(app1) )
K+ :



nil
K− :



klauncher::kdeinit exec(app1)



The plan first determines whether or not app1 and app3
are running by using find, which adds running(app1) and
running(app3) to Kw. Since app2 is already running,
restore(app2) ensures that it is not minimized. At the first
branch point, PKS reasons about the two possibilities for
running(app1). Along the K+ branch, running(app3) is
true and so it can simply maximize the application; along
the K− branch, ¬running(app3) is true and so app3 must
first be started using kdeinit exec(app3) before it can be
maximized. The remaining subplan along each branch is
then the same: PKS must again reason about the state of
running(app1) by introducing a new branch. If app1 is run-
ning then nothing needs to be done. Otherwise, the applica-
tion must be started using kdeinit exec(app1).



Execution of DCOP-based plans
All of the examples we describe in the previous section are
quickly generated by PKS, typically in less than 1 second.
What we are left with, however, is a plan that describes
DCOP-level actions with plan-level control directives like
branch, K+, K−, etc. Thus, such plans must first be con-
verted into an appropriate form before they can be executed.



For sequential plans with fully instantiated arguments
(i.e., no functions), such as those in our first example do-
main, the job of transforming such plans into an executable
form is straightforward: we can syntactically transform each
action app:category::service(arguments) into the form:



dcop app category service arguments



and run the resulting statements as a simple shell script. For
more complex plans, such as those with branches, we use
the Perl interface to DCOP. By doing so we can use if-else
control structures in place of plan branches, and standard
variables to denote plan-level run-time variables, which can
be assigned the execution-time return values of DCOP calls.



As part of our postprocessing stage, we also ensure that
the appropriate application instances have been started for
the services we require in a plan. While we have investigated
automatically starting applications at the planning level, in



the style of our last example domain, we have also done so
by simply scanning a generated plan, extracting the list of
applications used, and adding a prefix to the plan with the
appropriate klauncher::kdeinit exec actions.



Furthermore, we do not currently perform any plan execu-
tion monitoring, but instead we simply verify the final out-
come of executed plans as succeeding or failing. We leave
the plan monitoring task for future work.



Discussion
One of the difficulties arising from using a language like
DCOP as the basis for an action representation is that DCOP
was designed primarily for programming and script writing.
As such, its semantics are targeted at the application pro-
grammer and do not provide the means necessary for distin-
guishing between application-specific operations or indicat-
ing the relationships between the information such services
provide.7 Although some services are commonly available
across many applications (e.g., the mainwindow services),
developers are free to include whatever services they deem
necessary, making it difficult to automate the process of en-
coding actions from DCOP services.



Recent work has addressed some of these deficiencies for
the desktop. For instance, the NEPOMUK project8 aims to
develop a “Social Semantic Desktop” (see, e.g., (Richter,
Völkel, & Haller 2005; Sauermann et al. 2006)) that seeks
to enhance the standard desktop model by attaching meta-
level meaning to desktop information and services, mak-
ing it easier to exchange information between other desk-
tops and users—and more manageable by automated means.
In particular, an interesting NEPOMUK subproject aims to
adapt these ideas to the KDE desktop.9



DCOP itself goes a long way towards overcoming some
of the practical issues concerning software interoperability,
by providing a common language for interacting with appli-
cations. An interesting observation is the realization that the
interface to web services is typically through the desktop.
This observation is particularly important when we consider
that many applications do not distinguish between “desk-
top” and “network.” Instead, desktop applications routinely
use network transparency to shelter users from the trouble
of differentiating between a wide range of accessible files,
services, and devices. (For instance, many media players
seamlessly play both local files and remote streams, and web
browsers like Firefox or Konqueror also double as local file
managers.) Using desktop services to access web services
means that we can often ignore issues related to the trans-
port medium itself (i.e., the network), since such services
are viewed by the desktop interface as “local.”



DCOP is also important due to the large number of KDE



7It is often easy to determine how services should be modelled,
but not how the information provided by these services relates to
other services. For instance, services that return Boolean values
can usually be modelled using Kw, while those that return strings
can be modelled using functions and Kv .



8The project website can be found at nepomuk.
semanticdesktop.org.



9See nepomuk-kde.semanticdesktop.org.











applications that already use this interface. (Some of these
applications provide no software interface other than DCOP
and the standard graphical interface.) Moreover, a successor
to DCOP called D-BUS, which is based on DCOP, is be-
ing proposed as a desktop-independent standard by the open
source community (Pennington, Carlsson, & Larsson 2006).



There is also a question as to how planning technology
should be incorporated into KDE. An interesting approach
is the prospect of developing a KDE component that pro-
vides planning services (possibly through DCOP) to users
and other applications. How goals are conveyed to such a
component, and in what form, remains an open problem.



Although we present a set of examples which demonstrate
the flavour of the plans we can already generate (and some
interesting behaviour), work still needs to be done to extend
our examples to model more challenging aspects of desk-
top domains, in order to determine the scalability of our ap-
proach. Some domains require additional forms of knowl-
edge. For instance, searching a media player’s song database
for all the tracks by a particular artist produces an instance
of local closed world knowledge, which could be modelled
by PKS’s LCW database. More work is also needed to en-
hance PKS’s use of functions and Kv knowledge, which to-
gether with arithmetic operations are often required for re-
source management in the domains we have considered. We
have also begun experimenting with interleaving planning
and execution. Although PKS manages many types of infor-
mation effectively, we have found that it is often useful to
execute partial plans in order to fill in PKS’s databases be-
fore constructing large plans, especially in response to large
domains. Based on our preliminary results, however, we re-
main positive that the knowledge-level approach to planning
can be successful in operating system environments.



Conclusions
In this paper we investigated the use of knowledge-level
planning techniques in a desktop services domain. Since
the desktop interface is the natural interface to many appli-
cations, and such applications are often suited to tasks for
which there might not be existing alternatives, the challenge
of harnessing these services for automated planning remains
a worthwhile task. While we have focused on a particular
inter-application communication language (DCOP) in a par-
ticular desktop environment (KDE), we have also focused on
meeting the planning needs of real services provided by ex-
isting applications. As such, we believe that this domain is a
useful testbed for furthering our goal of constructing agents
that can operate in complex operating system environments.
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